Body Force Propeller Model for Unsteady Surge Motion

2018 ◽  
Author(s):  
Bradford G. Knight ◽  
Kevin J. Maki

Accurately modelling a self-propelled vessel in a large amplitude seaway with CFD is very expensive and practically out of reach. The expense is due to the very small numerical time-step required for the propeller rotation and the large mesh size. A method for accurately modelling a propeller while reducing computational cost is desirable. This paper describes the first step towards developing a body force propeller model for unsteady conditions. The purpose of this study is to train a semi-empirical algorithm to accurately prescribe the unsteady body force to model the propeller. The MOERI Container Ship propeller is analyzed with RANS CFD. Open water test data is compared to the RANS CFD results of a steady Moving Reference Frame approach. Harmonic surge is applied to a transient rotating mesh model in open water and the behind condition.

2019 ◽  
Vol 7 (10) ◽  
pp. 333 ◽  
Author(s):  
Zhu ◽  
Gao

The generation of tip vortex cavitation (TVC) is a common phenomenon in marine propellers. Therefore, it is important to find a way for the effective suppression of TVC. Based on the enlightenment of bionics, a propeller with winglets was numerically investigated by using a large eddy simulation (LES) model and the commercial software STAR-CCM+. Various variables, such as mesh size, number of prism layers, vapor properties and time step, were analyzed using the benchmark MAU5-80 propeller. The open water characteristics calculated for the benchmark propeller were compared with experimental data. The meshes in the region of the tip vortex wake were refined. The power spectral density (PSD) of the thrust coefficient and axial velocity were investigated. The comparison of TVC between the benchmark propeller and the propeller with winglets was studied with the Q-criterion, helicity and volume fraction of the vapor. The strength of the tip vortex wake is weakened by winglets; therefore, the presence of winglets leads to a reduction in vapor volume, which in turn alleviates TVC.


2021 ◽  
Vol 9 (4) ◽  
pp. 351
Author(s):  
Mobin Masoomi ◽  
Amir Mosavi

This paper aims to assess a new fluid–structure interaction (FSI) coupling approach for the vp1304 propeller to predict pressure and stress distributions with a low-cost and high-precision approach with the ability of repeatability for the number of different structural sets involved, other materials, or layup methods. An outline of the present coupling approach is based on an open-access software (OpenFOAM) as a fluid solver, and Abaqus used to evaluate and predict the blade’s deformation and strength in dry condition mode, which means the added mass effects due to propeller blades vibration is neglected. Wherein the imposed pressures on the blade surfaces are extracted for all time-steps. Then, these pressures are transferred to the structural solver as a load condition. Although this coupling approach was verified formerly (wedge impact), for the case in-hand, a further verification case, open water test, was performed to evaluate the hydrodynamic part of the solution with an e = 7.5% average error. A key factor for the current coupling approach is the rotational rate interrelated between two solution domains, which should be carefully applied in each time-step. Finally, the propeller strength assessment was performed by considering the blades’ stress and strain for different load conditions.


Author(s):  
Mobin Masoomi ◽  
Amir Mosavi

This study addressed a Fluid-Structure Interaction of an open Water test for vp1304 propeller to predict pressure and stress distributions with a low cost and high precision method. The most striking aspect of such a method(one-way coupling) is to use one hydrodynamic solution for the number of different structural sets involved in other materials or different layup methods and combinations of layers. An open-access software(OpenFOAM) with an open-source code solver is used to simulate the fluid domain. Abaqus is used To evaluate and predict the deformation and strength of the blade with the Finite Element Method(FEM). The coupling approach is based on dry condition, which means the added mass effects due to propeller blades vibration is neglected. The pressures imposed on the blades are extracted from the fluid solver for each time step. Then, These pressures role as a load condition for the structure solver. This approach was verified in the last paper(wedge impact); a key factor for the present solution is the rotational rate interrelated between two solution domains, which is explained in this paper. Finally, the blades' stress and strain are calculated and compared in each advance coefficient.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Qi Zhang ◽  
Abhishek Khetan ◽  
Süleyman Er

AbstractAlloxazines are a promising class of organic electroactive compounds for application in aqueous redox flow batteries (ARFBs), whose redox properties need to be tuned further for higher performance. High-throughput computational screening (HTCS) enables rational and time-efficient study of energy storage compounds. We compared the performance of computational chemistry methods, including the force field based molecular mechanics, semi-empirical quantum mechanics, density functional tight binding, and density functional theory, on the basis of their accuracy and computational cost in predicting the redox potentials of alloxazines. Various energy-based descriptors, including the redox reaction energies and the frontier orbital energies of the reactant and product molecules, were considered. We found that the lowest unoccupied molecular orbital (LUMO) energy of the reactant molecules is the best performing chemical descriptor for alloxazines, which is in contrast to other classes of energy storage compounds, such as quinones that we reported earlier. Notably, we present a flexible in silico approach to accelerate both the singly and the HTCS studies, therewithal considering the level of accuracy versus measured electrochemical data, which is readily applicable for the discovery of alloxazine-derived organic compounds for energy storage in ARFBs.


2018 ◽  
Vol 140 (9) ◽  
Author(s):  
R. Maffulli ◽  
L. He ◽  
P. Stein ◽  
G. Marinescu

The emerging renewable energy market calls for more advanced prediction tools for turbine transient operations in fast startup/shutdown cycles. Reliable numerical analysis of such transient cycles is complicated by the disparity in time scales of the thermal responses in fluid and solid domains. Obtaining fully coupled time-accurate unsteady conjugate heat transfer (CHT) results under these conditions would require to march in both domains using the time-step dictated by the fluid domain: typically, several orders of magnitude smaller than the one required by the solid. This requirement has strong impact on the computational cost of the simulation as well as being potentially detrimental to the accuracy of the solution due to accumulation of round-off errors in the solid. A novel loosely coupled CHT methodology has been recently proposed, and successfully applied to both natural and forced convection cases that remove these requirements through a source-term based modeling (STM) approach of the physical time derivative terms in the relevant equations. The method has been shown to be numerically stable for very large time steps with adequate accuracy. The present effort is aimed at further exploiting the potential of the methodology through a new adaptive time stepping approach. The proposed method allows for automatic time-step adjustment based on estimating the magnitude of the truncation error of the time discretization. The developed automatic time stepping strategy is applied to natural convection cases under long (2000 s) transients: relevant to the prediction of turbine thermal loads during fast startups/shutdowns. The results of the method are compared with fully coupled unsteady simulations showing comparable accuracy with a significant reduction of the computational costs.


2021 ◽  
Author(s):  
Marie Turčičová ◽  
Jan Mandel ◽  
Kryštof Eben

<p>A widely popular group of data assimilation methods in meteorological and geophysical sciences is formed by filters based on Monte-Carlo approximation of the traditional Kalman filter, e.g. <span>E</span><span>nsemble Kalman filter </span><span>(EnKF)</span><span>, </span><span>E</span><span>nsemble </span><span>s</span><span>quare-root filter and others. Due to the computational cost, ensemble </span><span>size </span><span>is </span><span>usually </span><span>small </span><span>compar</span><span>ed</span><span> to the dimension of the </span><span>s</span><span>tate </span><span>vector. </span><span>Traditional </span> <span>EnKF implicitly uses the sample covariance which is</span><span> a poor estimate of the </span><span>background covariance matrix - singular and </span><span>contaminated by </span><span>spurious correlations. </span></p><p><span>W</span><span>e focus on modelling the </span><span>background </span><span>covariance matrix by means of </span><span>a linear model for its inverse. This is </span><span>particularly </span><span>useful</span> <span>in</span><span> Gauss-Markov random fields (GMRF), </span><span>where</span> <span>the inverse covariance matrix has </span><span>a banded </span><span>structure</span><span>. </span><span>The parameters of the model are estimated by the</span><span> score matching </span><span>method which </span><span>provides</span><span> estimators in a closed form</span><span>, cheap to compute</span><span>. The resulting estimate</span><span> is a key component of the </span><span>proposed </span><span>ensemble filtering algorithms. </span><span>Under the assumption that the state vector is a GMRF in every time-step, t</span><span>he Score matching filter with Gaussian resamplin</span><span>g (SMF-GR) </span><span>gives</span><span> in every time-step a consistent (in the large ensemble limit) estimator of mean and covariance matrix </span><span>of the forecast and analysis distribution</span><span>. Further, we propose a filtering method called Score matching ensemble filter (SMEF), based on regularization of the EnK</span><span>F</span><span>. Th</span><span>is</span><span> filter performs well even for non-Gaussian systems with non-linear dynamic</span><span>s</span><span>. </span><span>The performance of both filters is illustrated on a simple linear convection model and Lorenz-96.</span></p>


Author(s):  
Franz Pichler ◽  
Gundolf Haase

A finite element code is developed in which all of the computationally expensive steps are performed on a graphics processing unit via the THRUST and the PARALUTION libraries. The code focuses on the simulation of transient problems where the repeated computations per time-step create the computational cost. It is used to solve partial and ordinary differential equations as they arise in thermal-runaway simulations of automotive batteries. The speed-up obtained by utilizing the graphics processing unit for every critical step is compared against the single core and the multi-threading solutions which are also supported by the chosen libraries. This way a high total speed-up on the graphics processing unit is achieved without the need for programming a single classical Compute Unified Device Architecture kernel.


2013 ◽  
Vol 18 (3) ◽  
pp. 381-394 ◽  
Author(s):  
Long Yu ◽  
Martin Greve ◽  
Markus Druckenbrod ◽  
Moustafa Abdel-Maksoud

2013 ◽  
Vol 14 (5) ◽  
pp. 1228-1251 ◽  
Author(s):  
Yan Li ◽  
I-Liang Chern ◽  
Joung-Dong Kim ◽  
Xiaolin Li

AbstractWe use front tracking data structures and functions to model the dynamic evolution of fabric surface. We represent the fabric surface by a triangulated mesh with preset equilibrium side length. The stretching and wrinkling of the surface are modeled by the mass-spring system. The external driving force is added to the fabric motion through the “Impulse method” which computes the velocity of the point mass by superposition of momentum. The mass-spring system is a nonlinear ODE system. Added by the numerical and computational analysis, we show that the spring system has an upper bound of the eigen frequency. We analyzed the system by considering two spring models and we proved in one case that all eigenvalues are imaginary and there exists an upper bound for the eigen-frequency This upper bound plays an important role in determining the numerical stability and accuracy of the ODE system. Based on this analysis, we analyzed the numerical accuracy and stability of the nonlinear spring mass system for fabric surface and its tangential and normal motion. We used the fourth order Runge-Kutta method to solve the ODE system and showed that the time step is linearly dependent on the mesh size for the system.


Author(s):  
Sheikh Md Rabiul Islam

In this paper analysis of a RLC circuit model that has been described optimal time step and minimize of error using numerical method. The goal is to reach the optimal time response due to the input for which optimal output response reaches a minimum error and also compared with ODE solver of MATLAB packages for the different cell (mesh) size of the RLC model. Table is constructed of the model to evaluate optimal time step and also CPU time into the simulation using MATLAB 7.6.0(R2008a).The values of register, capacitor and inductor as well as electromagnetic force are obtained through the mathematical relations of the model. The general analysis of the RLC circuit due to the optimal time step and minimum error is developed after several analysis and operations. The theoretical results show effectiveness of optimized of the model. Keywords: Optimal time step; MATLAB; Trapezoidal; Implicit Euler; Runge-Kutta method; RLC circuit. DOI: http://dx.doi.org/10.3329/diujst.v7i1.9650   Daffodil International University Journal of Science and Technology Vol.7(1) 2012 67-73


Sign in / Sign up

Export Citation Format

Share Document