Suppression of Vortex Shedding With Rotating Wake-Control Cylinders: Numerical Investigation at a Moderate Reynolds Number

Author(s):  
Gustavo R. S. Assi ◽  
Reinaldo M. Orselli ◽  
Mariana Silva-Ortega

This paper presents an investigation of the suppression of vortex shedding of a larger circular cylinder by the interference of smaller rotating wake-control cylinders positioned around its center. Three-dimensional numerical simulations have been conducted at a moderate Reynolds number of 10,000, thus complementing the previous experimental results by offering a better understanding of the physical mechanisms behind the suppression. Visualization of the vortex wakes revealed a complex disruption of the vortex tubes for the higher rotation speeds, with consequent reduction in the mean drag of almost 52% when compared with that of a bare cylinder. Fluctuating lift has also been drastically reduced in 90%. Configurations of control cylinder that can suppress vortex shedding may produce more efficient suppressors for flow-induced vibrations.

2017 ◽  
Vol 825 ◽  
pp. 743-763 ◽  
Author(s):  
James C. Schulmeister ◽  
J. M. Dahl ◽  
G. D. Weymouth ◽  
M. S. Triantafyllou

We study the use of small counter-rotating cylinders to control the streaming flow past a larger main cylinder for drag reduction. In a water tunnel experiment at a Reynolds number of 47 000 with a three-dimensional and turbulent wake, particle image velocimetry (PIV) measurements show that rotating cylinders narrow the mean wake and shorten the recirculation length. The drag of the main cylinder was measured to reduce by up to 45 %. To examine the physical mechanism of the flow control in detail, a series of two-dimensional numerical simulations at a Reynolds number equal to 500 were conducted. These simulations investigated a range of control cylinder diameters in addition to rotation rates and gaps to the main cylinder. Effectively controlled simulated flows present a streamline that separates from the main cylinder, passes around the control cylinder, and reattaches to the main cylinder at a higher pressure. The computed pressure recovery from the separation to reattachment points collapses with respect to a new scaling, which indicates that the control mechanism is viscous.


1980 ◽  
Vol 101 (4) ◽  
pp. 721-735 ◽  
Author(s):  
Masaru Kiya ◽  
Hisataka Tamura ◽  
Mikio Arie

The frequency of vortex shedding from a circular cylinder in a uniform shear flow and the flow patterns around it were experimentally investigated. The Reynolds number Re, which was defined in terms of the cylinder diameter and the approaching velocity at its centre, ranged from 35 to 1500. The shear parameter, which is the transverse velocity gradient of the shear flow non-dimensionalized by the above two quantities, was varied from 0 to 0·25. The critical Reynolds number beyond which vortex shedding from the cylinder occurred was found to be higher than that for a uniform stream and increased approximately linearly with increasing shear parameter when it was larger than about 0·06. In the Reynolds-number range 43 < Re < 220, the vortex shedding disappeared for sufficiently large shear parameters. Moreover, in the Reynolds-number range 100 < Re < 1000, the Strouhal number increased as the shear parameter increased beyond about 0·1.


2020 ◽  
Vol 23 (12) ◽  
pp. 2679-2693 ◽  
Author(s):  
Huan Li ◽  
Xuhui He ◽  
Hanfeng Wang ◽  
Si Peng ◽  
Shuwei Zhou ◽  
...  

Experiments on the aerodynamics of a two-dimensional bluff body simplified from a China high-speed train in crosswinds were carried out in a wind tunnel. Effects of wind angle of attack α varying in [−20°, 20°] were investigated at a moderate Reynolds number Re = 9.35 × 104 (based on the height of the model). Four typical behaviors of aerodynamics were identified. These behaviors are attributed to the flow structure around the upper and lower halves of the model changing from full to intermittent reattachment, and to full separation with a variation in α. An alternate transition phenomenon, characterized by an alteration between large- and small-amplitude aerodynamic fluctuations, was detected. The frequency of this alteration is about 1/10 of the predominant vortex shedding. In the intervals of the large-amplitude behavior, aerodynamic forces fluctuate periodically with a strong span-wise coherence, which are caused by the anti-symmetric vortex shedding along the stream-wise direction. On the contrary, the aerodynamic forces fluctuating at small amplitudes correspond to a weak span-wise coherence, which are ascribed to the symmetric vortex shedding from the upper and lower halves of the model. Generally, the mean amplitude of the large-amplitude mode is 3 times larger than that of the small one. Finally, the effects of Reynolds number were examined within Re = [9.35 × 104, 2.49 × 105]. Strong Reynolds number dependence was observed on the model with two rounded upper corners.


2015 ◽  
Vol 770 ◽  
pp. 247-272 ◽  
Author(s):  
A. Di Marco ◽  
M. Mancinelli ◽  
R. Camussi

The statistical properties of wall pressure fluctuations generated on a rigid flat plate by a tangential incompressible single stream jet are investigated experimentally. The study is carried out at moderate Reynolds number and for different distances between the nozzle axis and the flat plate. The overall aerodynamic behaviour is described through hot wire anemometer measurements, providing the effect of the plate on the mean and fluctuating velocity. The pressure field acting on the flat plate was measured by cavity-mounted microphones, providing point-wise pressure signals in the stream-wise and span-wise directions. Statistics of the wall pressure fluctuations are determined in terms of time-domain and Fourier-domain quantities and a parametric analysis is conducted in terms of the main geometrical length scales. Possible scaling laws of auto-spectra and coherence functions are presented and implications for theoretical modelling are discussed.


Author(s):  
Bruno S. Carmo ◽  
Rafael S. Gioria ◽  
Ivan Korkischko ◽  
Cesar M. Freire ◽  
Julio R. Meneghini

Two- and three-dimensional simulations of the flow around straked cylinders are presented. For the two-dimensional simulations we used the Spectral/hp Element Method, and carried out simulations for five different angles of rotation of the cylinder with respect to the free stream. Fixed and elastically-mounted cylinders were tested, and the Reynolds number was kept constant and equal to 150. The results were compared to those obtained from the simulation of the flow around a bare cylinder under the same conditions. We observed that the two-dimensional strakes are not effective in suppressing the vibration of the cylinders, but also noticed that the responses were completely different even with a slight change in the angle of rotation of the body. The three-dimensional results showed that there are two mechanisms of suppression: the main one is the decrease in the vortex shedding correlation along the span, whilst a secondary one is the vortex wake formation farther downstream.


2013 ◽  
Vol 735 ◽  
pp. 307-346 ◽  
Author(s):  
S. Kumar ◽  
C. Lopez ◽  
O. Probst ◽  
G. Francisco ◽  
D. Askari ◽  
...  

AbstractFlow past a circular cylinder executing sinusoidal rotary oscillations about its own axis is studied experimentally. The experiments are carried out at a Reynolds number of 185, oscillation amplitudes varying from $\mathrm{\pi} / 8$ to $\mathrm{\pi} $, and at non-dimensional forcing frequencies (ratio of the cylinder oscillation frequency to the vortex-shedding frequency from a stationary cylinder) varying from 0 to 5. The diagnostic is performed by extensive flow visualization using the hydrogen bubble technique, hot-wire anemometry and particle-image velocimetry. The wake structures are related to the velocity spectra at various forcing parameters and downstream distances. It is found that the phenomenon of lock-on occurs in a forcing frequency range which depends not only on the amplitude of oscillation but also the downstream location from the cylinder. The experimentally measured lock-on diagram in the forcing amplitude and frequency plane at various downstream locations ranging from 2 to 23 diameters is presented. The far-field wake decouples, after the lock-on at higher forcing frequencies and behaves more like a regular Bénard–von Kármán vortex street from a stationary cylinder with vortex-shedding frequency mostly lower than that from a stationary cylinder. The dependence of circulation values of the shed vortices on the forcing frequency reveals a decay character independent of forcing amplitude beyond forcing frequency of ${\sim }1. 0$ and a scaling behaviour with forcing amplitude at forcing frequencies ${\leq }1. 0$. The flow visualizations reveal that the far-field wake becomes two-dimensional (planar) near the forcing frequencies where the circulation of the shed vortices becomes maximum and strong three-dimensional flow is generated as mode shape changes in certain forcing parameter conditions. It is also found from flow visualizations that even at higher Reynolds number of 400, forcing the cylinder at forcing amplitudes of $\mathrm{\pi} / 4$ and $\mathrm{\pi} / 2$ can make the flow field two-dimensional at forcing frequencies greater than ${\sim }2. 5$.


2008 ◽  
Vol 617 ◽  
pp. 355-379 ◽  
Author(s):  
VAGESH D. NARASIMHAMURTHY ◽  
HELGE I. ANDERSSON ◽  
BJØRNAR PETTERSEN

Direct numerical simulation (DNS) of vortex shedding behind a tapered plate with the taper ratio 20 placed normal to the inflow has been performed. The Reynolds numbers based on the uniform inflow velocity and the width of the plate at the wide and narrow ends were 1000 and 250, respectively. For the first time ever cellular vortex shedding was observed behind a tapered plate in a numerical experiment (DNS). Multiple cells of constant shedding frequency were found along the span of the plate. This is in contrast to apparent lack of cellular vortex shedding found in the high-Reynolds-number experiments by Gaster & Ponsford (Aero. J., vol. 88, 1984, p. 206). However, the present DNS data is in good qualitative agreement with similar high-Reynolds-number experimental data produced by Castro & Watson (Exp. Fluids, vol. 37, 2004, p. 159). It was observed that a tapered plate creates longer formation length coupled with higher base pressure as compared to non-tapered (i.e. uniform) plates. The three-dimensional recirculation bubble was nearly conical in shape. A significant base pressure reduction towards the narrow end of the plate, which results in a corresponding increase in Strouhal number, was noticed. This observation is consistent with the experimental data of Castro & Rogers (Exp. Fluids, vol. 33, 2002, p. 66). Pressure-driven spanwise secondary motion was observed, both in the front stagnation zone and also in the wake, thereby reflecting the three-dimensionality induced by the tapering.


Author(s):  
Barrett Poole ◽  
Joseph W. Hall

The corner wall jet is similar to the standard three-dimensional wall jet with the exception that one half of the surface has been rotated counter-clockwise by 90 degrees. The corner wall jet investigated here is formed using a long round pipe with a Reynolds number of 159,000. Contours of the mean and turbulent flow field were measured using hot-wire anemometry. The results indicate that the ratio of lateral to vertical growth in the corner wall jet is approximately half of that in a standard turbulent three-dimensional wall jet.


Sign in / Sign up

Export Citation Format

Share Document