Stress Analysis of Post-Buckled Sandwich Panels

Author(s):  
Jani Romanoff ◽  
Jasmin Jelovica ◽  
Bruno Reinaldo Goncalves ◽  
Heikki Remes

The paper presents a method to assess stresses in sandwich plates with periodic microstructure in the post-buckling region. The fundamental assumption is that the microstructure is linear elastic and von Karman non-linearity is present only at macro-, i.e. panel-scale. This enables response evaluation by equivalent homogenous continuum with constant stiffness properties. It is shown that the homogenization cancels shear-induced, odd-terms in microstructural field variables such as displacements and stresses. These are of fundamental importance when strength of the panel must be assessed. The localization approach utilised here neglects the actual position of the microstructure and thus is able to capture only the maximum values of these stress fluctuations. The validation of the present approach is carried out with 3D FE analyses and a good agreement is shown. The shear-induced periodic stresses are of fundamental importance when the strength in the post-buckling region is assessed based on linear elastic basis.

Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 2731
Author(s):  
Ameya Rege

The macroscopic mechanical behavior of open-porous cellular materials is dictated by the geometric and material properties of their microscopic cell walls. The overall compressive response of such materials is divided into three regimes, namely, the linear elastic, plateau and densification. In this paper, a constitutive model is presented, which captures not only the linear elastic regime and the subsequent pore-collapse, but is also shown to be capable of capturing the hardening upon the densification of the network. Here, the network is considered to be made up of idealized square-shaped cells, whose cell walls undergo bending and buckling under compression. Depending on the choice of damage criterion, viz. elastic buckling or irreversible bending, the cell walls collapse. These collapsed cells are then assumed to behave as nonlinear springs, acting as a foundation to the elastic network of active open cells. To this end, the network is decomposed into an active network and a collapsed one. The compressive strain at the onset of densification is then shown to be quantified by the point of intersection of the two network stress-strain curves. A parameter sensitivity analysis is presented to demonstrate the range of different material characteristics that the model is capable of capturing. The proposed constitutive model is further validated against two different types of nanoporous materials and shows good agreement.


2014 ◽  
Vol 606 ◽  
pp. 209-212
Author(s):  
Luboš Náhlík ◽  
Bohuslav Máša ◽  
Pavel Hutař

This paper deals with the fracture behaviour of layered ceramic composite with residual stresses. The main goal is to investigate the effect of residual stresses and material interfaces on crack propagation by more complex 3D finite element models. The crack behaviour was described by analytical procedures based on linear elastic fracture mechanics (LEFM) and generalized LEFM. The influence of laminate composition with residual stresses on critical values for crack propagation through the laminate interfaces was also determined. Good agreement has been found to exist between numerical results and experimental data. The results obtained can be used for a design of new layered composites with improved resistance against crack propagation.


2001 ◽  
Author(s):  
Sung S. Suh ◽  
H. Thomas Hahn ◽  
Nanlin Han ◽  
Jenn-Ming Yang

Abstract Failure of stiffened panels under compression is preceded by buckling of their skin and hence is affected by the presence of out-of-plane stresses. One of the promising methods of preventing premature delamination is stitching. The present paper discusses the effect of such stitching on compression behavior of blade-stiffened panels that were fabricated from plain weave AS4/3501-6 through resin film infusion process. Kevlar 29 yarn was used at a stitch density of 9.92 stitches per cm2. Some of the panels were damaged by drop-weight impact before compression testing. For comparison purposes unstitched panels with the same materials and dimensions were also tested under the same loading conditions. Stitching resulted in a 10% improvement in strength in the absence of any intentional damage. The beneficial effect of stitching was most obvious when the panels were impacted on a flange: a 50% improvement was observed in post-impact strength. However, stitching could not prevent stiffener from failure when impacted directly. Thus stitching had no beneficial effect when impact occurred on a stiffener. A buckling and post-buckling analysis was carried out using 3-D shell elements on the Abaqus. Predictions were in fairly good agreement with the experimental data.


2018 ◽  
Vol 15 (06) ◽  
pp. 1850046 ◽  
Author(s):  
Man Hu ◽  
Qiuqiang Liu ◽  
Fei Wu ◽  
Mengting Yu ◽  
Shenghua Jiang

Landslide can usually be induced by a strong earthquake, and it causes very serious property damage and human casualties. Modeling of post-failure flow of landslides is one of the important approaches that can be used to simulate landslide flow developments and predict the landslide hazard zone. In this paper, a Smoothed Particle Hydrodynamics (SPH) model based on the constitution of elastic-plastic constitutive mechanics for soil has been developed for simulating the behavior of a class of geo-materials under the seismic loadings. Our SPH-Soil model considers the plastic behavior of the materials, and hence it is very important for more accurate and realistic simulations of geo-materials of soil type. The implemented materials laws in the SPH-Soil code include classical elastic-plasticity with a linear elastic part, and different applicable yield surfaces with nonassociated flow rules. In order to apply this model to actual landslide modeling the Geographic Information System (GIS) is utilized to generate site-specific models. We have thus developed a C# code to generate the particles of a given landslide site, which produces realistic particle mass and actual complicated boundaries for the SPH-Soil model. With GIS enabled, complex topography and irregular boundary can be accurately and easily built up. Then the SPH-Soil code has been applied to the well-known Daguangbao landslide, which was triggered by Wenchuan earthquake in 2008. The topographies after failure were compared with that obtained from field collected data and good agreement was found.


1985 ◽  
Vol 29 (03) ◽  
pp. 162-169
Author(s):  
Theodore Kokkinis ◽  
Michael M. Bernitsas

The post-buckling behavior of heavy tubular columns following static instability under the combined action of weight, tension/compression at the top, and fluid static pressure forces in the gravity field is studied. A two-dimensional nonlinear small-strain large-deflection model of the column is derived, consisting of an integrodifferential equilibrium equation and two end rotation conditions. The equation of equilibrium is discretized using a finite-element method. An approximate solution valid in the neighborhood of the bifurcation point and an incremental solution are used to determine the secondary equilibrium path. The results of both methods are corrected by Newton-Raphson iteration. Conditions for unstable initial post-buckling behavior and existence of limit points on the secondary equilibrium path are presented. The numerical solution is applied to the problem of the elastica and is found to be in good agreement with the analytical solution. The secondary equilibrium path for a 500-m-long (1640 ft) marine drilling riser is calculated for two sets of boundary conditions and various values of the drilling mud density. The effect of the drilling mud density and the boundary conditions on the riser's post-buckling behavior is discussed.


Author(s):  
C. M. Wang ◽  
K. K. Ang ◽  
C. Wang

A Rayleigh-Ritz analysis is presented for the free vibration of skew sandwich plates composed of an orthotropic core and laminated facings. By proposing a set of Ritz functions consisting of the product of mathematically complete polynomial functions and the the boundary equations raised to appropriate powers, the Rayleigh-Ritz method can be automated to handle such composite plates with any combination of edge conditions. For convenience and better accurarcy, the Ritz formulation was derived in the skew coordinate system. Vibration frequencies of rectangular plates (a special case of skew plates) obtained via this method have been found to be in good agreement with previous researchers results. Owing to length limitation, only sample vibration frequencies for skew sandwich plates are presented.


2002 ◽  
Vol 02 (02) ◽  
pp. 185-206 ◽  
Author(s):  
A. K. L. SRIVASTAVA ◽  
P. K. DATTA ◽  
A. H. SHEIKH

The vibration and dynamic instability behavior of a stiffened plate subjected to uniform in-plane edge loading is studied using finite element analysis. The method of Hill's infinite determinants is applied to analyze the dynamic instability regions. Rectangular stiffened plates possessing different boundary conditions, aspect ratios, varying mass and stiffness properties and varying number of stiffeners have been analyzed for dynamic instability. The results are obtained considering the bending displacements of the plate and the stiffener. Eccentricity of the stiffeners give rise to axial and bending displacement in the middle plane of the plate. The results show that the principal instability regions have a significant effect considering and neglecting in-plane displacements. Comparison with published results indicates good agreement.


2015 ◽  
Vol 798 ◽  
pp. 462-469 ◽  
Author(s):  
Arash Ranjbaran ◽  
Mohammad Reza Khoshravan ◽  
Mahsa Kharazi

Sandwich plates are one of the important components in construction of engineering and especially aerospace structures. In this paper, buckling analysis of sandwich plates was investigated experimentally and analytically using layerwise theory. The sandwich plate was rectangular and made of two composite laminates as skins and a viscoelastic core. The formulation was based on the first order shear deformation theory and the Rayleigh-Ritz method was used for approximating and determining the displacement field. The behavior of viscoelastic material modeled using Zener three-element model. The results obtained from layerwise theory compared with experimental results and showed good agreement. This study demonstrated that, layerwise theory could describe buckling behavior of sandwich plates with high accuracy and represents more realistic and acceptable description of behavior of the plates with much less computational cost.


Sign in / Sign up

Export Citation Format

Share Document