Full-Scale Reynolds Number VIV Testing of Tri-Helically Grooved Drill Riser Buoyancy Module

Author(s):  
Collin Gaskill ◽  
Jie Wu ◽  
Decao Yin

A newly developed Tri-Helically Grooved drilling riser buoyancy module design was tested in the towing tank of SINTEF Ocean in June 2017. This new design aims to reduce riser drag loading and suppress vortex-induced vibrations (VIV). Objectives of the test program were two-fold: to assess the hydrodynamic performance of the design allowing for validation of previous computational fluid dynamics (CFD) studies through empirical measurements, and, to develop a hydrodynamic force coefficient database to be used in numerical simulations to evaluate drilling riser deformation due to drag loading and fatigue lives when subjected to VIV. This paper provides the parameters of the testing program and a discussion of the results from the various testing configurations assessed. Tests were performed using large scale, rigid cylinder test models at Reynolds numbers in the super-critical flow regime, defined as starting at a Reynolds number of Re = 3.5 × 105 – 5.0 × 105 (depending on various literatures) and continuing until Re = 3 × 106. Towing tests, with fixed and freely oscillating test models, were completed with both a bare test cylinder and a test cylinder with the Tri-Helical Groove design. Additional forced motion tests were performed on the helically grooved model to calculate lift and added mass coefficients at various amplitudes and frequencies of oscillation for the generation of a hydrodynamic force coefficient database for VIV prediction software. Significant differences were observed in the hydrodynamic performance of the bare and helically grooved test models considering both in-line (IL) drag and cross-flow (CF) cylinder excitation and oscillation amplitude. For the helically grooved model, measured static drag shows a strong independence from Reynolds number and elimination of the drag crisis region with an average drag coefficient of 0.63. Effective elimination of VIV and subsequent drag amplification was observed at relatively higher reduced velocities, where the bare test model shows a significant dynamic response. A small level of expected response for the helically grooved model was seen across the lower range of reduced velocities. However, disruption of vortex correlation still occurs in this range and non-sinusoidal and highly amplitude-modulated responses were observed.

2015 ◽  
Vol 782 ◽  
pp. 300-332 ◽  
Author(s):  
Fangfang Xie ◽  
Yue Yu ◽  
Yiannis Constantinides ◽  
Michael S. Triantafyllou ◽  
George Em Karniadakis

We employ three-dimensional direct and large-eddy numerical simulations of the vibrations and flow past cylinders fitted with free-to-rotate U-shaped fairings placed in a cross-flow at Reynolds number $100\leqslant \mathit{Re}\leqslant 10\,000$. Such fairings are nearly neutrally buoyant devices fitted along the axis of long circular risers to suppress vortex-induced vibrations (VIVs). We consider three different geometric configurations: a homogeneous fairing, and two configurations (denoted A and AB) involving a gap between adjacent segments. For the latter two cases, we investigate the effect of the gap on the hydrodynamic force coefficients and the translational and rotational motions of the system. For all configurations, as the Reynolds number increases beyond 500, both the lift and drag coefficients decrease. Compared to a plain cylinder, a homogeneous fairing system (no gaps) can help reduce the drag force coefficient by 15 % for reduced velocity $U^{\ast }=4.65$, while a type A gap system can reduce the drag force coefficient by almost 50 % for reduced velocity $U^{\ast }=3.5,4.65,6$, and, correspondingly, the vibration response of the combined system, as well as the fairing rotation amplitude, are substantially reduced. For a homogeneous fairing, the cross-flow amplitude is reduced by about 80 %, whereas for fairings with a gap longer than half a cylinder diameter, VIVs are completely eliminated, resulting in additional reduction in the drag coefficient. We have related such VIV suppression or elimination to the features of the wake flow structure. We find that a gap causes the generation of strong streamwise vorticity in the gap region that interferes destructively with the vorticity generated by the fairings, hence disorganizing the formation of coherent spanwise cortical patterns. We provide visualization of the incoherent wake flow that leads to total elimination of the vibration and rotation of the fairing–cylinder system. Finally, we investigate the effect of the friction coefficient between cylinder and fairing. The effect overall is small, even when the friction coefficients of adjacent segments are different. In some cases the equilibrium positions of the fairings are rotated by a small angle on either side of the centreline, in a symmetry-breaking bifurcation, which depends strongly on Reynolds number.


2018 ◽  
Vol 847 ◽  
pp. 786-820 ◽  
Author(s):  
Methma M. Rajamuni ◽  
Mark C. Thompson ◽  
Kerry Hourigan

The effects of transverse rotation on the vortex-induced vibration (VIV) of a sphere in a uniform flow are investigated numerically. The one degree-of-freedom sphere motion is constrained to the cross-stream direction, with the rotation axis orthogonal to flow and vibration directions. For the current simulations, the Reynolds number of the flow, $Re=UD/\unicode[STIX]{x1D708}$, and the mass ratio of the sphere, $m^{\ast }=\unicode[STIX]{x1D70C}_{s}/\unicode[STIX]{x1D70C}_{f}$, were fixed at 300 and 2.865, respectively, while the reduced velocity of the flow was varied over the range $3.5\leqslant U^{\ast }~(\equiv U/(f_{n}D))\leqslant 11$, where, $U$ is the upstream velocity of the flow, $D$ is the sphere diameter, $\unicode[STIX]{x1D708}$ is the fluid viscosity, $f_{n}$ is the system natural frequency and $\unicode[STIX]{x1D70C}_{s}$ and $\unicode[STIX]{x1D70C}_{f}$ are solid and fluid densities, respectively. The effect of sphere rotation on VIV was studied over a wide range of non-dimensional rotation rates: $0\leqslant \unicode[STIX]{x1D6FC}~(\equiv \unicode[STIX]{x1D714}D/(2U))\leqslant 2.5$, with $\unicode[STIX]{x1D714}$ the angular velocity. The flow satisfied the incompressible Navier–Stokes equations while the coupled sphere motion was modelled by a spring–mass–damper system, under zero damping. For zero rotation, the sphere oscillated symmetrically through its initial position with a maximum amplitude of approximately 0.4 diameters. Under forced rotation, it oscillated about a new time-mean position. Rotation also resulted in a decreased oscillation amplitude and a narrowed synchronisation range. VIV was suppressed completely for $\unicode[STIX]{x1D6FC}>1.3$. Within the $U^{\ast }$ synchronisation range for each rotation rate, the drag force coefficient increased while the lift force coefficient decreased from their respective pre-oscillatory values. The increment of the drag force coefficient and the decrement of the lift force coefficient reduced with increasing reduced velocity as well as with increasing rotation rate. In terms of wake dynamics, in the synchronisation range at zero rotation, two equal-strength trails of interlaced hairpin-type vortex loops were formed behind the sphere. Under rotation, the streamwise vorticity trail on the advancing side of the sphere became stronger than the trail in the retreating side, consistent with wake deflection due to the Magnus effect. This symmetry breaking appears to be associated with the reduction in the observed amplitude response and the narrowing of the synchronisation range. In terms of variation with Reynolds number, the sphere oscillation amplitude was found to increase over the range $Re\in [300,1200]$ at $U^{\ast }=6$ for each of $\unicode[STIX]{x1D6FC}=0.15$, 0.75 and 1.5. The VIV response depends strongly on Reynolds number, with predictions indicating that VIV will persist for higher rotation rates at higher Reynolds numbers.


2016 ◽  
Author(s):  
H. Marcollo ◽  
A. E. Potts ◽  
D. R. Johnstone ◽  
P. Pezet ◽  
P. Kurts

Drilling risers are regularly deployed in deep water (over 1500 m) with large sections covered in buoyancy modules. The smooth cylindrical shape of these modules can result in significant vortex-induced vibration (VIV) response, causing an overall amplification of drag experienced by the riser. Operations can be suspended due to the total drag adversely affecting top and bottom angles. Although suppression technologies exist to reduce VIV (such as helical strakes or fairings), and therefore reduce VIV-induced amplification of drag, only fairings are able to be installed onto buoyancy modules for practical reasons, and fairings themselves have significant penalties related to installation, removal, and reliability. An innovative solution has been developed to address this gap; LGS (Longitudinally Grooved Suppression)1. Two model testing campaigns were undertaken; small scale (sub-critical Reynolds Number flow), and large scale (post-critical Reynolds Number flow) to test and confirm the performance benefits of LGS. The testing campaigns found substantial benefits measured in hydrodynamic performance that will be realized when LGS modules are deployed by operators for deepwater drilling operations.


Author(s):  
Iman Ashtiani Abdi ◽  
Morteza Khashehchi ◽  
Kamel Hooman

Flow structures downstream of a finned-tube are compared to those of an identical pipe; with the same diameter and length, covered with a foam layer. The standard case of cross-flow over a bare tube, i.e. no surface extension, is also tested as a benchmark. Experiments are conducted in a wind tunnel at Reynolds numbers of 4000 and 16000. Particle image velocimetry (PIV) was used for flow visualization on two different perpendicular planes. To characterize the size of the flow structures downstream of the tube, for each of the aforementioned case, two-point correlation, as a statistical analysis tool, has been used. It has been observed that by decreasing the Reynolds number, the flow structures are further stretched in streamwise direction for both bare and finned-tube cases. This is, however, more pronounced with the former. Interestingly, with a foam-wrapped tube the sizes of the flow structures are found to be independent of the Reynolds number. Finally, the structure sizes are smaller in the case of the foam-wrapped tube compared to those of finned-tube.


Author(s):  
Fumio Inada ◽  
Takashi Nishihara ◽  
Akira Yasuo ◽  
Ryo Morita ◽  
Akihiro Sakashita ◽  
...  

Cross-shaped tube bundle is proposed for a lower plenum structure in a next generation LWR. Vibration response of cross-shaped tube bundle in cross flow has been measured in water tunnel tests. First, small-scale test was conducted. Tests were conducted with 3×3 flexible tubes as well as single flexible tube in rigid tube bundle. The flexible tubes could vibrate in lift, drag, and torsional direction. The effect of arrangements of tube bundle and the natural frequency ratio of bending and torsional vibrations were considered. Second, a large-scale test was conducted for only one case to check the effect of Reynolds number, in which Reynolds number was 10 times larger than that of small-scale test. In all the cases, large amplitude vibration could appear when the flow velocity became larger than a critical value, and a self-excited vibration was found to occur. The nondimensional critical gap velocity of the large-scale test agreed well with that of the small-scale test, which suggested that the effect of Reynolds number was not so large. A design guideline to prevent self-excited vibration was proposed for cross-shaped tube bundle.


2013 ◽  
Vol 718 ◽  
pp. 5-38 ◽  
Author(s):  
Chan Yong Schuele ◽  
Thomas C. Corke ◽  
Eric Matlis

AbstractSpanwise-periodic roughness designed to excite selected wavelengths of stationary cross-flow modes was investigated in a three-dimensional boundary layer at Mach 3.5. The test model was a sharp-tipped $1{4}^{\circ } $ right-circular cone. The model and integrated sensor traversing system were placed in the Mach 3.5 supersonic low disturbance tunnel (SLDT) equipped with an axisymmetric ‘quiet design’ nozzle at NASA Langley Research Center. The model was oriented at a $4. {2}^{\circ } $ angle of attack to produce a mean cross-flow velocity component in the boundary layer over the cone. The research examined both passive and active surface roughness. The passive roughness consisted of indentations (dimples) that were evenly spaced around the cone at an axial location that was just upstream of the first linear stability neutral growth branch for cross-flow modes. The active roughness consisted of an azimuthal array of micrometre-sized plasma actuators that were designed to produce the effect of passive surface bumps. Two azimuthal mode numbers of the passive and active patterned roughness were examined. One had an azimuthal mode number that was in the band of initially amplified stationary cross-flow modes. This was intended to represent a controlled baseline condition. The other azimuthal mode number was designed to suppress the growth of the initially amplified stationary cross-flow modes and thereby increase the transition Reynolds number. The results showed that the stationary cross-flow modes were receptive to both the passive and active patterned roughness. Only the passive roughness was investigated at a unit Reynolds number where transition would occur on the cone. Transition front measurements using the Preston tube approach indicated that the transition Reynolds number had increased by 35 % with the subcritical wavenumber roughness compared with the baseline smooth tip cone, and by 40 % compared with the critical wavenumber roughness. Based on the similarities in the response of the stationary cross-flow modes with the active roughness, we expect it would produce a similar transition delay.


2018 ◽  
Vol 140 (6) ◽  
Author(s):  
H. Marcollo ◽  
A. E. Potts ◽  
D. R. Johnstone ◽  
P. Pezet ◽  
P. Kurts

Drilling risers are regularly deployed in deep water (over 1500 m) with large sections covered in buoyancy modules. The smooth cylindrical shape of these modules can result in significant vortex-induced vibration (VIV) response, causing an overall amplification of drag experienced by the riser. Operations can be suspended due to the total drag adversely affecting top and bottom angles. Although suppression technologies exist to reduce VIV (such as helical strakes or fairings), and therefore reduce VIV-induced amplification of drag, only fairings are able to be installed onto buoyancy modules for practical reasons, and fairings themselves have significant penalties related to installation, removal, and reliability. An innovative solution has been developed to address this gap: longitudinally grooved suppression (LGS). Two model testing campaigns were undertaken: small scale (subcritical Reynolds number flow), and large scale (postcritical Reynolds number flow) to test and confirm the performance benefits of LGS. The testing campaigns found substantial benefits measured in hydrodynamic performance that will be realized when LGS modules are deployed by operators for deepwater drilling operations.


2006 ◽  
Vol 129 (3) ◽  
pp. 311-318 ◽  
Author(s):  
K. Shahzad ◽  
B. A. Fleck ◽  
D. J. Wilson

Jet-crossflow experiments were performed in a water channel to determine the Reynolds number effects on the plume trajectory and entrainment coefficient. The purpose was to establish a lower limit down to which small scale laboratory experiments are accurate models of large scale atmospheric scenarios. Two models of a turbulent vertical surface jet (diameters 3.175mm and 12.7mm) were designed and tested over a range of jet exit Reynolds numbers up to 104. The results show that from Reynolds number 200–4000 there is about a 40% increase in the entrainment coefficient, whereas from Reynolds number 4000–10,000, the increase in entrainment coefficient is only 2%. The conclusion is that Reynolds numbers significantly affect plume trajectories when the model Reynolds numbers are below 4000. Changing the initial turbulence in the exit flow from 12% to 2% without changing its mean velocity profile caused a less than one source diameter increase in the final plume rise.


2021 ◽  
Vol 926 ◽  
Author(s):  
F. Le Roy De Bonneville ◽  
R. Zamansky ◽  
F. Risso ◽  
A. Boulin ◽  
J.-F. Haquet

We present a numerical method for simulating the flow induced by bubbles rising at large Reynolds number. This method is useful to simulate configurations of large dimensions involving a great number of bubbles. The action that each bubble exerts on the liquid is modelled as a volume source of momentum distributed over a few mesh-grid elements. The flow in the vicinity of the bubbles is thus not finely resolved. The bubbles are treated as Lagrangian particles that move under the influence of the hydrodynamic force exerted by the liquid. The determination of this force on a given bubble requires knowledge of the liquid flow that is undisturbed by this bubble. A model is developed to accurately estimate this disturbance for large-Reynolds-number objects and get rid of any spurious self-induced effect. Thanks to that, a homogeneous swarm of rising bubbles is simulated. Comparisons with experiments show a good agreement with the flow scales larger than the bubbles, which turn out to be controlled by the interactions between bubble wakes and rather independent of unresolved smaller scales. This method can be used to study the coupling between bubble-induced agitation and large-scale motions, such as those produced in industrial bubble columns.


Sign in / Sign up

Export Citation Format

Share Document