Investigation of Large-Scale Structures Behind a Single Tube (Finned and Foamed Tube) Using Two-Point Correlations

Author(s):  
Iman Ashtiani Abdi ◽  
Morteza Khashehchi ◽  
Kamel Hooman

Flow structures downstream of a finned-tube are compared to those of an identical pipe; with the same diameter and length, covered with a foam layer. The standard case of cross-flow over a bare tube, i.e. no surface extension, is also tested as a benchmark. Experiments are conducted in a wind tunnel at Reynolds numbers of 4000 and 16000. Particle image velocimetry (PIV) was used for flow visualization on two different perpendicular planes. To characterize the size of the flow structures downstream of the tube, for each of the aforementioned case, two-point correlation, as a statistical analysis tool, has been used. It has been observed that by decreasing the Reynolds number, the flow structures are further stretched in streamwise direction for both bare and finned-tube cases. This is, however, more pronounced with the former. Interestingly, with a foam-wrapped tube the sizes of the flow structures are found to be independent of the Reynolds number. Finally, the structure sizes are smaller in the case of the foam-wrapped tube compared to those of finned-tube.

2006 ◽  
Vol 129 (3) ◽  
pp. 311-318 ◽  
Author(s):  
K. Shahzad ◽  
B. A. Fleck ◽  
D. J. Wilson

Jet-crossflow experiments were performed in a water channel to determine the Reynolds number effects on the plume trajectory and entrainment coefficient. The purpose was to establish a lower limit down to which small scale laboratory experiments are accurate models of large scale atmospheric scenarios. Two models of a turbulent vertical surface jet (diameters 3.175mm and 12.7mm) were designed and tested over a range of jet exit Reynolds numbers up to 104. The results show that from Reynolds number 200–4000 there is about a 40% increase in the entrainment coefficient, whereas from Reynolds number 4000–10,000, the increase in entrainment coefficient is only 2%. The conclusion is that Reynolds numbers significantly affect plume trajectories when the model Reynolds numbers are below 4000. Changing the initial turbulence in the exit flow from 12% to 2% without changing its mean velocity profile caused a less than one source diameter increase in the final plume rise.


2001 ◽  
Vol 426 ◽  
pp. 263-295 ◽  
Author(s):  
RUPAD M. DAREKAR ◽  
SPENCER J. SHERWIN

Numerical investigations have been performed for the flow past square-section cylinders with a spanwise geometric deformation leading to a stagnation face with a sinusoidal waviness. The computations were performed using a spectral/hp element solver over a range of Reynolds numbers from 10 to 150.Starting from fully developed shedding past a straight cylinder at a Reynolds number of 100, a sufficiently high waviness is impulsively introduced resulting in the stabilization of the near wake to a time-independent state. It is shown that the spanwise waviness sets up a cross-flow within the growing boundary layer on the leading-edge surface thereby generating streamwise and vertical components of vorticity. These additional components of vorticity appear in regions close to the inflection points of the wavy stagnation face where the spanwise vorticity is weakened. This redistribution of vorticity leads to the breakdown of the unsteady and staggered Kármán vortex wake into a steady and symmetric near-wake structure. The steady nature of the near wake is associated with a reduction in total drag of about 16% at a Reynolds number of 100 compared with the straight, non-wavy cylinder.Further increases in the amplitude of the waviness lead to the emergence of hairpin vortices from the near-wake region. This wake topology has similarities to the wake of a sphere at low Reynolds numbers. The physical structure of the wake due to the variation of the amplitude of the waviness is identified with five distinct regimes. Furthermore, the introduction of a waviness at a wavelength close to the mode A wavelength and the primary wavelength of the straight square-section cylinder leads to the suppression of the Kármán street at a minimal waviness amplitude.


2001 ◽  
Author(s):  
Lamyaa A. El-Gabry ◽  
Deborah A. Kaminski

Abstract Measurements of the local heat transfer distribution on smooth and roughened surfaces under an array of angled impinging jets are presented. The test rig is designed to simulate impingement with cross-flow in one direction which is a common method for cooling gas turbine components such as the combustion liner. Jet angle is varied between 30, 60, and 90 degrees as measured from the impingement surface, which is either smooth or randomly roughened. Liquid crystal video thermography is used to capture surface temperature data at five different jet Reynolds numbers ranging between 15,000 and 35,000. The effect of jet angle, Reynolds number, gap, and surface roughness on heat transfer efficiency and pressure loss is determined along with the various interactions among these parameters. Peak heat transfer coefficients for the range of Reynolds number from 15,000 to 35,000 are highest for orthogonal jets impinging on roughened surface; peak Nu values for this configuration ranged from 88 to 165 depending on Reynolds number. The ratio of peak to average Nu is lowest for 30-degree jets impinging on roughened surfaces. It is often desirable to minimize this ratio in order to decrease thermal gradients, which could lead to thermal fatigue. High thermal stress can significantly reduce the useful life of engineering components and machinery. Peak heat transfer coefficients decay in the cross-flow direction by close to 24% over a dimensionless length of 20. The decrease of spanwise average Nu in the crossflow direction is lowest for the case of 30-degree jets impinging on a roughened surface where the decrease was less than 3%. The decrease is greatest for 30-degree jet impingement on a smooth surface where the stagnation point Nu decreased by more than 23% for some Reynolds numbers.


Author(s):  
Collin Gaskill ◽  
Jie Wu ◽  
Decao Yin

A newly developed Tri-Helically Grooved drilling riser buoyancy module design was tested in the towing tank of SINTEF Ocean in June 2017. This new design aims to reduce riser drag loading and suppress vortex-induced vibrations (VIV). Objectives of the test program were two-fold: to assess the hydrodynamic performance of the design allowing for validation of previous computational fluid dynamics (CFD) studies through empirical measurements, and, to develop a hydrodynamic force coefficient database to be used in numerical simulations to evaluate drilling riser deformation due to drag loading and fatigue lives when subjected to VIV. This paper provides the parameters of the testing program and a discussion of the results from the various testing configurations assessed. Tests were performed using large scale, rigid cylinder test models at Reynolds numbers in the super-critical flow regime, defined as starting at a Reynolds number of Re = 3.5 × 105 – 5.0 × 105 (depending on various literatures) and continuing until Re = 3 × 106. Towing tests, with fixed and freely oscillating test models, were completed with both a bare test cylinder and a test cylinder with the Tri-Helical Groove design. Additional forced motion tests were performed on the helically grooved model to calculate lift and added mass coefficients at various amplitudes and frequencies of oscillation for the generation of a hydrodynamic force coefficient database for VIV prediction software. Significant differences were observed in the hydrodynamic performance of the bare and helically grooved test models considering both in-line (IL) drag and cross-flow (CF) cylinder excitation and oscillation amplitude. For the helically grooved model, measured static drag shows a strong independence from Reynolds number and elimination of the drag crisis region with an average drag coefficient of 0.63. Effective elimination of VIV and subsequent drag amplification was observed at relatively higher reduced velocities, where the bare test model shows a significant dynamic response. A small level of expected response for the helically grooved model was seen across the lower range of reduced velocities. However, disruption of vortex correlation still occurs in this range and non-sinusoidal and highly amplitude-modulated responses were observed.


2019 ◽  
Vol 875 ◽  
pp. 44-70 ◽  
Author(s):  
Karin Blackman ◽  
Laurent Perret ◽  
Romain Mathis

Urban-type rough-wall boundary layers developing over staggered cube arrays with plan area packing density, $\unicode[STIX]{x1D706}_{p}$, of 6.25 %, 25 % or 44.4 % have been studied at two Reynolds numbers within a wind tunnel using hot-wire anemometry (HWA). A fixed HWA probe is used to capture the outer-layer flow while a second moving probe is used to capture the inner-layer flow at 13 wall-normal positions between $1.25h$ and $4h$ where $h$ is the height of the roughness elements. The synchronized two-point HWA measurements are used to extract the near-canopy large-scale signal using spectral linear stochastic estimation and a predictive model is calibrated in each of the six measurement configurations. Analysis of the predictive model coefficients demonstrates that the canopy geometry has a significant influence on both the superposition and amplitude modulation. The universal signal, the signal that exists in the absence of any large-scale influence, is also modified as a result of local canopy geometry suggesting that although the nonlinear interactions within urban-type rough-wall boundary layers can be modelled using the predictive model as proposed by Mathis et al. (J. Fluid Mech., vol. 681, 2011, pp. 537–566), the model must be however calibrated for each type of canopy flow regime. The Reynolds number does not significantly affect any of the model coefficients, at least over the limited range of Reynolds numbers studied here. Finally, the predictive model is validated using a prediction of the near-canopy signal at a higher Reynolds number and a prediction using reference signals measured in different canopy geometries to run the model. Statistics up to the fourth order and spectra are accurately reproduced demonstrating the capability of the predictive model in an urban-type rough-wall boundary layer.


2010 ◽  
Vol 132 (4) ◽  
Author(s):  
N. J. Fiala ◽  
J. D. Johnson ◽  
F. E. Ames

A letterbox trailing edge configuration is formed by adding flow partitions to a gill slot or pressure side cutback. Letterbox partitions are a common trailing edge configuration for vanes and blades, and the aerodynamics of these configurations are consequently of interest. Exit surveys detailing total pressure loss, turning angle, and secondary velocities have been acquired for a vane with letterbox partitions in a large-scale low speed cascade facility. These measurements are compared with exit surveys of both the base (solid) and gill slot vane configurations. Exit surveys have been taken over a four to one range in chord Reynolds numbers (500,000, 1,000,000, and 2,000,000) based on exit conditions and for low (0.7%), grid (8.5%), and aerocombustor (13.5%) turbulence conditions with varying blowing rate (50%, 100%, 150%, and 200% design flow). Exit loss, angle, and secondary velocity measurements were acquired in the facility using a five-hole cone probe at a measuring station representing an axial chord spacing of 0.25 from the vane trailing edge plane. Differences between losses with the base vane, gill slot vane, and letterbox vane for a given turbulence condition and Reynolds number are compared providing evidence of coolant ejection losses, and losses due to the separation off the exit slot lip and partitions. Additionally, differences in the level of losses, distribution of losses, and secondary flow vectors are presented for the different turbulence conditions at the different Reynolds numbers. The letterbox configuration has been found to have slightly reduced losses at a given flow rate compared with the gill slot. However, the letterbox requires an increased pressure drop for the same ejection flow. The present paper together with a related paper (2008, “Letterbox Trailing Edge Heat Transfer—Effects of Blowing Rate, Reynolds Number, and External Turbulence on Heat Transfer and Film Cooling Effectiveness,” ASME, Paper No. GT2008-50474), which documents letterbox heat transfer, is intended to provide designers with aerodynamic loss and heat transfer information needed for design evaluation and comparison with competing trailing edge designs.


Author(s):  
Abdalla Gomaa ◽  
Wael IA Aly ◽  
Ashraf Mimi Elsaid ◽  
Eldesuki I Eid

In the present study, the thermo-fluid characteristics of a spirally coiled finned tube in cross flow were experimentally investigated. This investigation covered different design parameters such as curvature ratio, air velocity, flow direction, fin pitch and flow rate of chilled water on performance characteristics of the spirally coiled finned tube. The purpose was to evaluate this kind of the spirally finned-tube cooling coils with particular reference to bare coiled tube. Six test specimens were designed and manufactured with curvature ratios of 0.027, 0.03, 0.04, tube pitches of 18, 20, 30 mm and fin pitches of (33, 22, 11 mm). Experiments were carried out in a pilot wind tunnel with air Reynolds number ranging from 35,500 to 245,000. Two types of chilled water flow directions entering the spiral coil were tested at Reynolds number ranging from 5700 to 25,300, the first was inward flow direction and the other was to outward flow direction. The results revealed that the inward flow direction has significant enhancement effect on the Nusselt number compared with outward flow direction by 37.0% for tube pitch of 18 mm and curvature ratio of 0.027. The decrease of fin pitch enhances the Nusselt number by 21.92% on expense of friction factor by 10.9%. In the case of spirally coiled bare tube, the decreasing of the curvature ratio increases air side Nusselt number by 33.69% on expense of friction factor by 18.36%. General correlations of Nusselt number and air friction factor for bare and finned spirally coiled tube were correlated based on reported experimental data.


Author(s):  
Jamison L. Szwalek ◽  
Carl M. Larsen

In-line vibrations have been noted to have an important contribution to the fatigue of free spanning pipelines. Still, in-line contributions are not usually accounted for in current VIV prediction models. The present study seeks to broaden the current knowledge regarding in-line vibrations by expanding the work of Aronsen (2007) to include possible Reynolds number effects on pure in-line forced, sinusoidal oscillations for four Reynolds numbers ranging from 9,000 to 36,200. Similar tests were performed for pure cross-flow forced motion as well, mostly to confirm findings from previous research. When experimental uncertainties are accounted for, there appears to be little dependence on Reynolds number for all three hydrodynamic coefficients considered: the force in phase with velocity, the force in phase with acceleration, and the mean drag coefficient. However, trends can still be observed for the in-line added mass in the first instability region and for the transition between the two instability regions for in-line oscillations, and also between the low and high cross-flow added mass regimes. For Re = 9,000, the hydrodynamic coefficients do not appear to be stable and can be regarded as highly Reynolds number dependent.


2016 ◽  
Vol 808 ◽  
pp. 511-538 ◽  
Author(s):  
Matteo de Giovanetti ◽  
Yongyun Hwang ◽  
Haecheon Choi

Despite a growing body of recent evidence on the hierarchical organization of the self-similar energy-containing motions in the form of Townsend’s attached eddies in wall-bounded turbulent flows, their role in turbulent skin-friction generation is currently not well understood. In this paper, the contribution of each of these self-similar energy-containing motions to turbulent skin friction is explored up to $Re_{\unicode[STIX]{x1D70F}}\simeq 4000$. Three different approaches are employed to quantify the skin-friction generation by the motions, the spanwise length scale of which is smaller than a given cutoff wavelength: (i) FIK (Fukagata, Iwamoto, Kasagi) identity in combination with the spanwise wavenumber spectra of the Reynolds shear stress; (ii) confinement of the spanwise computational domain; (iii) artificial damping of the motions to be examined. The near-wall motions are found to continuously reduce their role in skin-friction generation on increasing the Reynolds number, consistent with the previous finding at low Reynolds numbers. The largest structures given in the form of very-large-scale and large-scale motions are also found to be of limited importance: due to a non-trivial scale interaction process, their complete removal yields only a 5–8 % skin-friction reduction at all of the Reynolds numbers considered, although they are found to be responsible for 20–30 % of total skin friction at $Re_{\unicode[STIX]{x1D70F}}\simeq 2000$. Application of all the three approaches consistently reveals that the largest amount of skin friction is generated by the self-similar motions populating the logarithmic region. It is further shown that the contribution of these motions to turbulent skin friction gradually increases with the Reynolds number, and that these coherent structures are eventually responsible for most of turbulent skin-friction generation at sufficiently high Reynolds numbers.


2004 ◽  
Vol 108 (1086) ◽  
pp. 403-409 ◽  
Author(s):  
C. A. Coat ◽  
G. D. Lock

Abstract Flow visualisation experiments related to turbine film cooling have been conducted. These investigated the fluid mechanics of coolant ejection using a large-scale, flat-plate model at engine-representative Reynolds numbers in a low-speed tunnel with ambient-temperature mainstream flow. The coolant trajectories were captured using a fine nylon mesh covered with thermochromic liquid crystals, allowing measurement of gas temperature contours in planes perpendicular to the flow. Three injection geometries were assessed: cylindrical holes with stream-wise injection, cylindrical holes with cross-stream injection, and fan-shaped holes. The data demonstrated that the cylindrical holes produced discrete jets, which lifted off the surface at high coolant-to-mainstream momentum flux ratios; these jets were characterised by the kidney-shaped stream-tubes expected for injection into cross-flow. The jets injected with cross-stream momentum exhibited a more obvious kidney-shaped cross-section, which rotated with distance downstream of injection. The jets from the fan-shaped holes were attached to the surface even at high momentum flux ratios, were more diffuse, and exhibited two cores of high temperature. The trajectory visualisation data were used to interpret the adiabatic cooling effectiveness measured at the surface.


Sign in / Sign up

Export Citation Format

Share Document