scholarly journals A Comparative Study on the Dynamic Response of Three Semisubmersible Floating Offshore Wind Turbines

Author(s):  
Wei Shi ◽  
Lixian Zhang ◽  
Dezhi Ning ◽  
Zhiyu Jiang ◽  
Constantine Michailides ◽  
...  

Abstract Currently, there is a great interest to globally develop offshore wind energy due to the greenhouse effect and energy crisis. Great efforts have been devoted to develop reliable floating offshore wind energy technology to exploit the wind energy resources in deep seas. This paper presents a comparative study of the dynamic response of three different semisubmersible floating wind turbine structures. All the three platforms support the same 5MW wind turbine. The platforms examined are: a V-shaped Semi, an OC4-DeepCwind Semi and a Braceless Semi at 200 m water depth. A dynamic analysis is carried out in order to calculate and compare the performance of these platforms. The comparison is made on the rigid body motions of the semisubmersible platform and tensions of the mooring lines. The presented comparison is based on statistical values and spectra of the time series of the examined response quantities. Coupling effects are more significant for the V-shaped Semi platform. The V-shaped Semi and the Braceless Semi show a more rational motion response under the investigated load cases. The results of this analysis may help to resolve the fundamental design tradeoffs between among different floating system concepts.

Author(s):  
H. K. Jang ◽  
H. C. Kim ◽  
M. H. Kim ◽  
K. H. Kim

Numerical tools for a single floating offshore wind turbine (FOWT) have been developed by a number of researchers, while the investigation of multi-unit floating offshore wind turbines (MUFOWT) has rarely been performed. Recently, a numerical simulator was developed by TAMU to analyze the coupled dynamics of MUFOWT including multi-rotor-floater-mooring coupled effects. In the present study, the behavior of MUFOWT in time domain is described through the comparison of two load cases in maximum operational and survival conditions. A semi-submersible floater with four 2MW wind turbines, moored by eight mooring lines is selected as an example. The combination of irregular random waves, steady currents and dynamic turbulent winds are applied as environmental loads. As a result, the global motion and kinetic responses of the system are assessed in time domain. Kane’s dynamic theory is employed to formulate the global coupled dynamic equation of the whole system. The coupling terms are carefully considered to address the interactions among multiple turbines. This newly developed tool will be helpful in the future to evaluate the performance of MUFOWT under diverse environmental scenarios. In the present study, the aerodynamic interactions among multiple turbines including wake/array effect are not considered due to the complexity and uncertainty.


2021 ◽  
Vol 11 (24) ◽  
pp. 11665
Author(s):  
Shi Liu ◽  
Yi Yang ◽  
Chao Wang ◽  
Yuangang Tu

Spar-type floating offshore wind turbines commonly vibrate excessively when under the coupling impact of wind and wave. The wind turbine vibration can be controlled by developing its mooring system. Thus, this study proposes a novel mooring system for the spar-type floating offshore wind turbine. The proposed mooring system has six mooring lines, which are divided into three groups, with two mooring lines in the same group being connected to the same fairlead. Subsequently, the effects of the included angle between the two mooring lines on the mooring-system’s performance are investigated. Then, these six mooring lines are connected to six independent fairleads for comparison. FAST is utilized to calculate wind turbine dynamic response. Wind turbine surge, pitch, and yaw movements are presented and analyzed in time and frequency domains to quantitatively evaluate the performances of the proposed mooring systems. Compared with the mooring system with six fairleads, the mooring system with three fairleads performed better. When the included angle was 40°, surge, pitch, and yaw movement amplitudes of the wind turbine reduced by 39.51%, 6.8%, and 12.34%, respectively, when under regular waves; they reduced by 56.08%, 25.00%, and 47.5%, respectively, when under irregular waves. Thus, the mooring system with three fairleads and 40° included angle is recommended.


2017 ◽  
Vol 199 ◽  
pp. 3194-3199
Author(s):  
Alessandro Giusti ◽  
Giovanni Stabile ◽  
Enzo Marino ◽  
Claudio Borri

2012 ◽  
Vol 446-449 ◽  
pp. 1014-1019 ◽  
Author(s):  
Ruo Yu Zhang ◽  
Chao He Chen ◽  
You Gang Tang ◽  
Xiao Yan Huang

The water area in which water depth is deeper than 50m has special advantage in wind turbine generation, because there are the stable wind speed and small Wind-shear. In such sea area, the offshore wind energy generating equipments should be set up on floating foundation structure. Therefore, it is of great significance to study the floating foundation structures that are available for offshore wind energy generation for the industrialization of the offshore wind power generation. In this paper, the basic type and working principles are reviewed for some novel floating structures developed in recent year. In addition, some key dynamical problems and risk factors of the floating structure are systemically analyzed for working load caused by turbine running and sea environment loads of floating structure. The results are valuable for designing the floating structures of wind turbine generation.


Author(s):  
Yougang Tang ◽  
Yan Li ◽  
Peng Xie ◽  
Xiaoqi Qu ◽  
Bin Wang

Abstract Simulations are conducted in time domain to investigate the dynamic response of a SPAR-type floating offshore wind turbine under the scenarios with freak wave. Towards this end, a coupled aero-hydro numerical model is developed. The methodology includes a blade-element-momentum model for aerodynamics, a nonlinear model for hydrodynamics, a nonlinear restoring model of SPAR buoy, and a nonlinear algorithm for mooring cables. The OC3 Hywind SPAR-type FOWT is chosen as an example to study the dynamic response under the freak conditions, while the time series of freak wave is generated by the Random Frequency Components Selection Phase Modulation Method. The motions of platform, the tensions in the mooring lines and the power generation performance are documented in different cases. According to the simulations, it shows that the power coefficient of wind turbine decreased rapidly at the moment when freak wave acted on the floating structure.


Author(s):  
Abdollah A. Afjeh ◽  
◽  
Brett Andersen ◽  
Jin Woo Lee ◽  
Mahdi Norouzi ◽  
...  

Development of novel offshore wind turbine designs and technologies are necessary to reduce the cost of offshore wind energy since offshore wind turbines need to withstand ice and waves in addition to wind, a markedly different environment from their onshore counterparts. This paper focuses on major design challenges of offshore wind turbines and offers an advanced concept wind turbine that can significantly reduce the cost of offshore wind energy as an alternative to the current popular designs. The design consists of a two-blade, downwind rotor configuration fitted to a fixed bottom or floating foundation. Preliminary results indicate that cost savings of nearly 25% are possible compared with the conventional upwind wind turbine designs.


2021 ◽  
Author(s):  
Eloi Daniel de Araujo Neto ◽  
William Rodriguez ◽  
Fabr\xedcio Nogueira Corr\xeaa ◽  
Beatriz De Souza Leite Pires De Lima ◽  
Breno Pinheiro Jacob ◽  
...  

2019 ◽  
Vol 7 (4) ◽  
pp. 115 ◽  
Author(s):  
Yane Li ◽  
Conghuan Le ◽  
Hongyan Ding ◽  
Puyang Zhang ◽  
Jian Zhang

The paper discusses the effects of mooring configurations on the dynamic response of a submerged floating offshore wind turbine (SFOWT) for intermediate water depths. A coupled dynamic model of a wind turbine-tower-floating platform-mooring system is established, and the dynamic response of the platform, tensions in mooring lines, and bending moment at the tower base and blade root under four different mooring configurations are checked. A well-stabilized configuration (i.e., four vertical lines and 12 diagonal lines with an inclination angle of 30°) is selected to study the coupled dynamic responses of SFOWT with broken mooring lines, and in order to keep the safety of SFOWT under extreme sea-states, the pretension of the vertical mooring line has to increase from 1800–2780 kN. Results show that the optimized mooring system can provide larger restoring force, and the SFOWT has a smaller movement response under extreme sea-states; when the mooring lines in the upwind wave direction are broken, an increased motion response of the platform will be caused. However, there is no slack in the remaining mooring lines, and the SFOWT still has enough stability.


Sign in / Sign up

Export Citation Format

Share Document