Numerical Study on the Effect of Stern Flap for Hydrodynamic Performance of Catamaran

2019 ◽  
Author(s):  
Peng Zhou ◽  
Liwei Liu ◽  
Lixiang Guo ◽  
Qing Wang ◽  
Xianzhou Wang

Abstract This paper presents CFD simulation results of the stern flap effect with different lengths for hydrodynamic performance of catamaran moving in calm water, including resistance and sailing attitude. Inhouse viscous CFD (computational fluid dynamics) code HUST-Ship (Hydrodynamic Unsteady Simulation Technology for Ship) is used for the study. The catamaran with/without stern flap with different lengths were studied. The trim and sinkage of the catamaran were solved coupled with flow solver. Experimental studies in calm water were conducted to validate the numerical method. The comparison of hydrodynamic performance of catamaran with stern flaps of different lengths was made. The results show that the stern flap can reduce the sailing attitude and has influence for the resistance of catamaran at high-speed.

2021 ◽  
Vol 9 (2) ◽  
pp. 184
Author(s):  
Miles P. Wheeler ◽  
Konstantin I. Matveev ◽  
Tao Xing

Hard-chine boats are usually intended for high-speed regimes where they operate in the planing mode. These boats are often designed to be relatively light, but there are special applications that may occasionally require fast boats to be heavily loaded. In this study, steady-state hydrodynamic performance of nominal-weight and overloaded hard-chine hulls in calm water is investigated with computational fluid dynamics solver program STAR-CCM+. The resistance and attitude values of a constant-deadrise reference hull and its modifications with more pronounced bows of concave and convex shapes are obtained from numerical simulations. On average, 40% heavier hulls showed about 30% larger drag over the speed range from the displacement to planing modes. Among the studied configurations, the hull with a concave bow is found to have 5–12% lower resistance than the other hulls in the semi-displacement regime and heavy loadings and 2–10% lower drag in the displacement regime and nominal loading, while this hull is also capable of achieving fast planing speeds at the nominal weight with typical available thrust. The near-hull wave patterns and hull pressure distributions for selected conditions are presented and discussed as well.


1982 ◽  
Vol 104 (2) ◽  
pp. 158-165 ◽  
Author(s):  
R. E. Reid

The problem of definition of propulsion loss related to ship steering is addressed. Performance criteria representative of propulsion losses due to steering over a range of operating conditions including operation in calm water and a seaway are considered. Criteria are derived from strict analytical considerations and from empirical assumptions based on experimentally derived hydrodynamic data. The applicability of these various criteria and the implications for both assessment of relative performance of existing ship autopilots and for the design of new steering controllers is discussed in relation to simulation results for a high-speed containership.


2013 ◽  
Vol 135 (3) ◽  
Author(s):  
C. Chin ◽  
M. Li ◽  
C. Harkin ◽  
T. Rochwerger ◽  
L. Chan ◽  
...  

A numerical study of compressible jet flows is carried out using Reynolds averaged Navier–Stokes (RANS) turbulence models such as k-ɛ and k-ω-SST. An experimental investigation is performed concurrently using high-speed optical methods such as Schlieren photography and shadowgraphy. Numerical and experimental studies are carried out for the compressible impinging at various impinging angles and nozzle-to-wall distances. The results from both investigations converge remarkably well and agree with experimental data from the open literature. From the flow visualizations of the velocity fields, the RANS simulations accurately model the shock structures within the core jet region. The first shock cell is found to be constraint due to the interaction with the bow-shock structure for nozzle-to-wall distance less than 1.5 nozzle diameter. The results from the current study show that the RANS models utilized are suitable to simulate compressible free jets and impinging jet flows with varying impinging angles.


Author(s):  
K. V. Kannan ◽  
G. J. Page

Currently in an aircraft gas turbine engine, the turbomachinery and combustor components are designed in relative isolation and the effect of the upstream and downstream components on each other’s flow are not fully captured in the design process. The objective of this work is to carry out a multi-code integrated unsteady simulation of Compressor-Combustor components with each zone simulated using its own specialised CFD flow solver. The multi-code URANS technique is simple, based on files and involves the generation of new 2D boundary conditions for the required flow field at each time step. A driver based on a Python script automates the entire process. This paper shows the method first validated in a simple vortex shedding 2D case and then extended to a cold flow URANS simulation matching an isothermal compressor/combustor rig experiment. An external coupler code is invoked that produces unsteady, spatially varying, inlet conditions for the downstream components. The simulation results are encouraging as the mass, momentum and energy losses across the interface are less than 1%. The multi-code unsteady simulation produces wake profiles closer to the experiment than the coupled steady RANS simulation. The present study shows a reasonable agreement with the experimental PIV and hot-wire data thus demonstrating the potential of the multi-code integrated simulation technique.


2020 ◽  
Author(s):  
Kenshiro Takahashi ◽  
Prasanta K. Sahoo

Abstract This study was built upon previous works conducted by the authors in a series of numerical studies on submarine hydrodynamics and is aimed at enhancing the accuracy of computational fluid dynamics (CFD) application processes, which estimate the hydrodynamic performance of underwater vehicles for steady translation conditions in the horizontal and vertical planes. In an earlier work, the computed straight-ahead resistance of a submarine agreed with those of experiments within a comparison error of 2%. However, a maximum comparison error of approximately 20% was obtained for sway force under a steady translation condition. The Defense Advanced Research Projects Agency (DARPA) Suboff submarine model was adopted as a benchmark, and the computational modeling was based on the Reynolds-averaged Navier–Stokes (RANS) turbulence model for steady simulations. The curvature correction approach was tested to improve the computation of circumferential flow around the cylindrical hull, in particular. The dominant maneuvering coefficients were calculated using the computed forces and moments as a function of the yaw and pitch angles along with simplified equations of motion by fitting a curve to the plots. The hydrodynamic forces and moments exerted on the stern plane were individually computed using a locally refined mesh around the tail section. It was confirmed that the curvature correction approach improved the computational accuracy for the steady translation conditions, and general trends were captured over the tested yaw and pitch angles. However, some data points had notable comparison errors. Some of the estimated maneuvering coefficients agreed well between the CFD simulation and the experiments, whereas others had considerable comparison errors. The individually computed forces and moments exerted on the stern plane that had attack angles were inconsistent with those obtained in experiments. Those comparison errors may have been amplified by the complexity of configuration and arisen from differences in the experiments, such as the presence of a free surface and supporting strut to mount the hull to a carriage, and, perhaps, the geometrical differences owing to machining accuracy. The investigation of flow field at the propeller plane revealed that the wake distributions inside the nozzle were significantly affected by the angled stern planes; the reduced velocity area was expanded and shifted. Furthermore, harmonic analysis of the wake fraction was conducted, and several primary nth harmonics were observed, which were associated with the struts and stern planes. This result suggests the risk of higher noise levels associated with the number of blades.


2019 ◽  
Author(s):  
Qing Wang ◽  
Xuanshu Chen ◽  
Liwei Liu ◽  
Xianzhou Wang ◽  
MingJing Liu

Abstract The dangerous situation caused by the breakage of the ship will pose a serious threat to crew and ship safety. If the ship’s liquid cargo or fuel leaks, it will cause serious damage to the marine environment. If damage occurs accompanied by roll and other motions, it may cause more dangerous consequences. It is an important issue to study the damaged ship in time-domain. In this paper, the motions of the damaged DTMB 5512 in calm water and regular beam waves are studied numerically. The ship motions are analyzed through CFD methods, which are acknowledged as a reliable approach to simulate and analyze these complex physical phenomena. An in-house CFD (computational fluid dynamics) code HUST-Ship (Hydrodynamic Unsteady Simulation Technology for Ship) is used for solving RANS equations coupled with six degrees of freedom (6DOF) solid body motion equations. RANS equations discretized by finite difference method and solved by PISO algorithm. Level set was used for free surface simulation. The dynamic behavior of model was observed in both intact and damaged condition. The heave, roll and pitch amplitudes of the damaged ship were studied in calm water and beam wave of three wavelengths.


Author(s):  
Sayyed Mahdi Sajedi ◽  
Parviz Ghadimi ◽  
Aliakbar Ghadimi ◽  
Mohammad Sheikholeslami

High-speed vessels exhibit various motions and accelerations in calm water and sea waves. For examining the behavior of high-speed vessels, it is possible to examine these movements in laboratory models. In this paper, a single-step model in calm water is experimentally tested and compared with a model of no step. The speed range of these vessels is 1 m/s to 9 m/s equivalent to Beam Froude numbers of 0.43 to 3.87. During these experiments, the resistance parameters, trim, bow, and stern rise-up as well as the center of the gravity are measured. The non-step model has longitudinal instability at a speed of 8 m/s. This instability is avoided when the vessel is equipped by a transversal step. The vessel's trim and resistance are also reduced in the planing mode in calm water. Subsequently, hydrodynamic performance and its seakeeping condition in the planing regime are investigated for both vessels in regular waves. The single-step and non-step vessels are tested in the wavelength range of [Formula: see text], and the wave height range of 6 to 18 centimeters. It is observed that stepped vessel experiences lower motions and bow accelerations and less added resistance in comparison to the non-stepped vessel.


2011 ◽  
Vol 354-355 ◽  
pp. 691-695
Author(s):  
N. Karthikeyan ◽  
B T N Sridhar

Coaxial nozzles are an integral part of many engineering systems where mixing of different fluid streams is required. Single noncircular nozzles have been shown to have better mixing characteristics than their axisymmetric counterparts. Therefore, a combination of such nozzles into coaxial configurations is promising. The aim of the present study is to quantitatively determine the effects of the geometry of the primary supersonic jet on the mixing characteristics with the secondary high speed subsonic jet. Measurements of pressure profiles at several positions along central axis of jets using identical facilities and nominally identical experimental conditions were done. The mixing is dominated by the vortex structures that are present in the inner shear layers. The interaction of the vortex structures govern the growth, and entrainment, and mixing of the jet. Also, the experimental results show that the radial and centerline pressure profiles through various coaxial jets has good correlation with the CFD simulation.


Sign in / Sign up

Export Citation Format

Share Document