scholarly journals Numerical Study of Hydrodynamics of Heavily Loaded Hard-Chine Hulls in Calm Water

2021 ◽  
Vol 9 (2) ◽  
pp. 184
Author(s):  
Miles P. Wheeler ◽  
Konstantin I. Matveev ◽  
Tao Xing

Hard-chine boats are usually intended for high-speed regimes where they operate in the planing mode. These boats are often designed to be relatively light, but there are special applications that may occasionally require fast boats to be heavily loaded. In this study, steady-state hydrodynamic performance of nominal-weight and overloaded hard-chine hulls in calm water is investigated with computational fluid dynamics solver program STAR-CCM+. The resistance and attitude values of a constant-deadrise reference hull and its modifications with more pronounced bows of concave and convex shapes are obtained from numerical simulations. On average, 40% heavier hulls showed about 30% larger drag over the speed range from the displacement to planing modes. Among the studied configurations, the hull with a concave bow is found to have 5–12% lower resistance than the other hulls in the semi-displacement regime and heavy loadings and 2–10% lower drag in the displacement regime and nominal loading, while this hull is also capable of achieving fast planing speeds at the nominal weight with typical available thrust. The near-hull wave patterns and hull pressure distributions for selected conditions are presented and discussed as well.

Author(s):  
Sayyed Mahdi Sajedi ◽  
Parviz Ghadimi ◽  
Aliakbar Ghadimi ◽  
Mohammad Sheikholeslami

High-speed vessels exhibit various motions and accelerations in calm water and sea waves. For examining the behavior of high-speed vessels, it is possible to examine these movements in laboratory models. In this paper, a single-step model in calm water is experimentally tested and compared with a model of no step. The speed range of these vessels is 1 m/s to 9 m/s equivalent to Beam Froude numbers of 0.43 to 3.87. During these experiments, the resistance parameters, trim, bow, and stern rise-up as well as the center of the gravity are measured. The non-step model has longitudinal instability at a speed of 8 m/s. This instability is avoided when the vessel is equipped by a transversal step. The vessel's trim and resistance are also reduced in the planing mode in calm water. Subsequently, hydrodynamic performance and its seakeeping condition in the planing regime are investigated for both vessels in regular waves. The single-step and non-step vessels are tested in the wavelength range of [Formula: see text], and the wave height range of 6 to 18 centimeters. It is observed that stepped vessel experiences lower motions and bow accelerations and less added resistance in comparison to the non-stepped vessel.


2013 ◽  
Vol 20 (2) ◽  
pp. 21-29 ◽  
Author(s):  
Mohammad Hosein Karimi ◽  
Mohammad Saeed Seif ◽  
Madjid Abbaspoor

Abstract Trim control mechanisms such as interceptors and trim flaps have been widely used in recent years in highspeed crafts for ride and trim control. In spite of their extensive application, a few studies investigating the impact of interceptors on planing craft performance, have been published. In the present study, the impact of interceptors on planing crafts hydrodynamic quality is investigated through application of an experimental method. Two scaled-down models of high-speed planing mono-hull and catamaran are tested with and without interceptors in calm water at different heights of the interceptors to investigate the effect of interceptors on drag reduction of the models. The first one is a scaled-down model of 11 m planing mono-hull boat and the test was conducted at the towing tank of Sharif University of Technology, Iran. The second one is a scaled-down model of 18 m planing catamaran boat and the test was conducted at the towing tank of Krylov Shipbuilding Research Institute (KSRI), Russia. The experimental results show a remarkable drag reduction of up to 15% for mono-hull model and up to 12% for catamaran model over the wide speed range of the models.


2019 ◽  
Author(s):  
Peng Zhou ◽  
Liwei Liu ◽  
Lixiang Guo ◽  
Qing Wang ◽  
Xianzhou Wang

Abstract This paper presents CFD simulation results of the stern flap effect with different lengths for hydrodynamic performance of catamaran moving in calm water, including resistance and sailing attitude. Inhouse viscous CFD (computational fluid dynamics) code HUST-Ship (Hydrodynamic Unsteady Simulation Technology for Ship) is used for the study. The catamaran with/without stern flap with different lengths were studied. The trim and sinkage of the catamaran were solved coupled with flow solver. Experimental studies in calm water were conducted to validate the numerical method. The comparison of hydrodynamic performance of catamaran with stern flaps of different lengths was made. The results show that the stern flap can reduce the sailing attitude and has influence for the resistance of catamaran at high-speed.


2020 ◽  
Vol 36 (01) ◽  
pp. 52-66
Author(s):  
Arman Esfandiari ◽  
Sasan Tavakoli ◽  
Abbas Dashtimanesh

Reducing vertical motions of high-speed planing hulls in rough water is one of the most important factors that help a boat to become more operable, and will benefit the structure of the boat and the crew on board. In the recent decade, stepped planing hulls have been investigated with emphasis on their better performance in calm water than that of nonstepped planing hulls. However, there are still doubts about their performance in rough water. In this study, we investigate this problem by providing numerical simulations for motions of a double-stepped and a non-stepped planing hull in a vertical plane when they encounter head waves. The problem will be solved using the finite volume method and volume of fluid method. To this end, a numerical computational fluid dynamics code (STARCCM1) has been used. Accuracy of the numerical simulations is evaluated by comparing their outcome with available experimental data. The dynamic response of the investigated hulls has been numerically modeled for two different wave lengths, one of which is smaller than the boat length and the other which is larger than the boat length. Using the numerical simulations, heave and pitch motions as well as vertical acceleration are found. It has been found that at wave lengths larger than the boat length, heave amplitude decreases by 10–40%when two steps are added to the bottom of a vessel. It has also been observed that pitch of a planing hull is reduced by 18–32% in the presence of the two steps on its bottom. Finally, it has been observed that for wave lengths larger than the boat length, the maximum vertical acceleration decreases by a gravitational acceleration of about .2–.7.


2010 ◽  
Vol 133 (1) ◽  
Author(s):  
Manuel A. Burgos ◽  
Roque Corral

The effect of the finite extent of a linear cascade on the acoustic and vortical modes generated at the cascade exit by a set of moving bars located at the inlet is assessed by means of a numerical study. The sidewall interference is studied for an airfoil, which is representative of the midsection of a low pressure turbine airfoil. The deviations from the purely periodic steady state have been also investigated. It is concluded that both the unsteady pressure distributions on the airfoil and the mode-decomposition at the cascade exit show a reasonable matching with the purely periodic case, provided that the nominal interblade phase angle is taken into account to postprocess the numerical data. This conclusion is a key element to the investigation of the scattering and propagation of pure tones in turbomachinery in high speed linear cascades.


2015 ◽  
Author(s):  
S. Brizzolara ◽  
G. Vernengo ◽  
L. Bonfiglio ◽  
D. Bruzzone

The hydrodynamic performance of unconventional SWATH and Semi-SWATH for high speed applications are analyzed and compared in this paper. Bare hull resistance in calm water is estimated by an inviscid boundary element method with viscous corrections and verified by a fully turbulent, multiphase unsteady RANSE solver. Motions response in head waves, calculated by a frequency domain 3D panel method with forward speed effects are also evaluated and compared. Both considered hulls are the best designs coming from full parametric hull form optimization procedures, based on CFD solvers for the estimation of their hydrodynamic performance and driven by evolutionary minimization algorithms. The SWATH has twin parabolic struts and an unconventional underwater shape, the semi-SWATH has a slender triangular waterline, a bulbous shape in the entrance body which gradually morph into a U-section with a shallow transom in the run body. In general, as expected, the Semi-SWATH hull shows a lower drag at high speeds while the single strut SWATH is superior at lower speeds. As regards seakeeping, the SWATH shows unbeatable lower pitch and heave motions in shorter waves, where the Semi-SWATH evidences a double peaked RAO. More detailed analysis and conclusion are drawn in the paper.


Author(s):  
Sang-Won Kim ◽  
Sang-Eui Lee ◽  
Gyoung-Woo Lee ◽  
Kwang-Cheol Seo ◽  
Nobuyuki Oshima

Abstract This work addresses the numerical study of wave-piercing planing hull and related hydrodynamic performance as the appendages. From the half century ago, the interest in high-speed planing crafts has been advanced toward maintaining performance stably. The main reasons to make it hard are instability motion occurring from porpoising and wave condition. Porpoising is mainly due to overlap the heaving and pitching motion with certain period, which is caused by instable pressure distribution and changing longitudinal location of center of gravity. In addition, in wave condition, encountering wave disturbs going into planing mode. This paper presents numerical results of wave-piercing planing hull in porpoising and wave condition. Numerical simulation is conducted via Reynolds Averaged Navier-stokes (RANS) with moving mesh techniques (overset grid), performed at different wave condition. The results for the behaviors of wave-piercing hull form are practically presented and investigated in this study. The understanding of these phenomena is important for design of appendages of wave-piercing hull-form.


Author(s):  
Zhiwei Jiang ◽  
Tanghong Liu ◽  
Houyu Gu ◽  
Zijian Guo

The CFD (Computational Fluid Dynamics) numerical simulation method with the DES (detached eddy simulation) approach was adopted in this paper to investigate and compare the aerodynamic performance, pressure distributions of the train surface, and flow fields near the train model placed above the subgrade with non-rail, realistic rail, and simplified rail models under crosswind. The numerical methods were verified with the wind tunnel tests. Significant differences in aerodynamic performances of the train body and bogie were found in the cases with and without a rail model as the presence of the rail model had significant impacts on the flow field underneath the vehicle. A larger yaw angle can result in a more significant difference in aerodynamic coefficients. The deviations of the train aerodynamic forces and the pressure distribution on the train body with the realistic and simplified rail models were not significant. It was concluded that a rail model is necessary to get more realistic results, especially for large yaw angle conditions. Moreover, a simplified rectangular rail model is suggested to be employed instead of the realistic rail and is capable to get accurate results.


Sign in / Sign up

Export Citation Format

Share Document