Automated Multi-Code URANS Simulation of Compressor-Combustor Components

Author(s):  
K. V. Kannan ◽  
G. J. Page

Currently in an aircraft gas turbine engine, the turbomachinery and combustor components are designed in relative isolation and the effect of the upstream and downstream components on each other’s flow are not fully captured in the design process. The objective of this work is to carry out a multi-code integrated unsteady simulation of Compressor-Combustor components with each zone simulated using its own specialised CFD flow solver. The multi-code URANS technique is simple, based on files and involves the generation of new 2D boundary conditions for the required flow field at each time step. A driver based on a Python script automates the entire process. This paper shows the method first validated in a simple vortex shedding 2D case and then extended to a cold flow URANS simulation matching an isothermal compressor/combustor rig experiment. An external coupler code is invoked that produces unsteady, spatially varying, inlet conditions for the downstream components. The simulation results are encouraging as the mass, momentum and energy losses across the interface are less than 1%. The multi-code unsteady simulation produces wake profiles closer to the experiment than the coupled steady RANS simulation. The present study shows a reasonable agreement with the experimental PIV and hot-wire data thus demonstrating the potential of the multi-code integrated simulation technique.

2019 ◽  
Author(s):  
Peng Zhou ◽  
Liwei Liu ◽  
Lixiang Guo ◽  
Qing Wang ◽  
Xianzhou Wang

Abstract This paper presents CFD simulation results of the stern flap effect with different lengths for hydrodynamic performance of catamaran moving in calm water, including resistance and sailing attitude. Inhouse viscous CFD (computational fluid dynamics) code HUST-Ship (Hydrodynamic Unsteady Simulation Technology for Ship) is used for the study. The catamaran with/without stern flap with different lengths were studied. The trim and sinkage of the catamaran were solved coupled with flow solver. Experimental studies in calm water were conducted to validate the numerical method. The comparison of hydrodynamic performance of catamaran with stern flaps of different lengths was made. The results show that the stern flap can reduce the sailing attitude and has influence for the resistance of catamaran at high-speed.


Author(s):  
Doug Garrard

A new one-dimensional, time dependent aerothermodynamic mathematical model and computer simulation of the gas turbine engine has been developed. The Aerodynamic Turbine Engine Code (ATEC) simulates the operation of the gas turbine engine by solving conservation equations, expressed as one dimensional, time dependent Euler equations, with turbomachinery source terms. Development of the mathematical models were discussed in Part 1. Part 2 presents the results of exercising the simulation for several different problems. Results are presented for a subsonic, converging / diverging nozzle to demonstrate the validity of the numerical flow solvers and to demonstrate the functionality of the variable time step routine. Gas turbine engine simulation results are presented to demonstrate the capabilities of the ATEC simulation and for calibration purposes. The simulation results were obtained using the operating characteristics of a turboshaft engine.


2014 ◽  
Vol 13 (8) ◽  
pp. 4723-4728
Author(s):  
Pratiksha Saxena ◽  
Smt. Anjali

In this paper, an integrated simulation optimization model for the assignment problems is developed. An effective algorithm is developed to evaluate and analyze the back-end stored simulation results. This paper proposes simulation tool SIMASI (Simulation of assignment models) to simulate assignment models. SIMASI is a tool which simulates and computes the results of different assignment models. This tool is programmed in DOT.NET and is based on analytical approach to guide optimization strategy. Objective of this paper is to provide a user friendly simulation tool which gives optimized assignment model results. Simulation is carried out by providing the required values of matrix for resource and destination requirements and result is stored in the database for further comparison and study. Result is obtained in terms of the performance measurements of classical models of assignment system. This simulation tool is interfaced with an optimization procedure based on classical models of assignment system. The simulation results are obtained and analyzed rigorously with the help of numerical examples. 


1993 ◽  
Vol 115 (1) ◽  
pp. 128-136 ◽  
Author(s):  
J. Zeschky ◽  
H. E. Gallus

Detailed measurements have been performed in a subsonic, axial-flow turbine stage to investigate the structure of the secondary flow field and the loss generation. The data include the static pressure distribution on the rotor blade passage surfaces and radial-circumferential measurements of the rotor exit flow field using three-dimensional hot-wire and pneumatic probes. The flow field at the rotor outlet is derived from unsteady hot-wire measurements with high temporal and spatial resolution. The paper presents the formation of the tip clearance vortex and the passage vortices, which are strongly influenced by the spanwise nonuniform stator outlet flow. Taking the experimental values for the unsteady flow velocities and turbulence properties, the effect of the periodic stator wakes on the rotor flow is discussed.


2000 ◽  
Author(s):  
Li Wenzhong ◽  
B. C. Khoo ◽  
Xu Diao

Abstract The present paper is to determine the correction of hot-wire measurements when it is used to measure the shear flows region very close to the non-conducting wall. By numerical simulation of the Navier-Stokes and energy equations using the control volume method, we found that reasonably deployed grid distribution could largely reduce the computational domain size (for a typical Reynolds number for hot-wire near-wall measurements 4.0×10−3∼1.2, the domain boundary placing 650 diameters from the cylinder in front, rear and top is fair enough for accurate simulation, other than the domain boundary which places the 2000 diameters from the cylinder in front and top, and 3000 diameters from the cylinder in rear), and obtain the similar accuracy results for the correction of hot-wire measurements in the near-wall region. Numerical simulation results also show that, only taking the εf,εw (the maximum difference between the respective values of stream function and vorticity on successive iterations) as the criterion for convergence without judge to convergence of the temperature field seems not enough to obtain a convergent simulation result. This may be the possible reason which caused the discrepancy between the simulation results for hot-wire correction when using hot wire to measure the shear flows very close to the non-conducting wall.


SPE Journal ◽  
2021 ◽  
pp. 1-14
Author(s):  
Xin Su ◽  
Rouzbeh G. Moghanloo ◽  
Minhui Qi ◽  
Xiang-an Yue

Summary Formation damage mechanisms in general lower the quality of the near wellbore, often manifested in the form of permeability reduction, and thus reducing the productivity of production wells and injectivity of injection wells. Asphaltene deposition, as one of the important causes, can trigger serious formation damage issues and significantly restrict the production capacity of oil wells. Several mechanisms acting simultaneously contribute to the complexity associated with prediction of permeability impairment owing to asphaltene deposition; thus, integration of modeling efforts for asphaltene aggregation and deposition mechanisms seems inevitable for improved predictability. In this work, an integrated simulation approach is proposed to predict permeability impairment in porous medium. The proposed approach is novel because it integrates various mathematical models to study permeability impairment considering porosity reduction, particle aggregation, and pore connectivity loss caused by asphaltene deposition. To improve the accuracy of simulation results, porous media is considered as a bundle (different size) of capillary tubes with dynamic interconnectivity. The total volume change of interconnected tubes will directly represent permeability reduction realized in porous media. The prediction of asphaltene deposition in porous media is improved in this paper via integration of the particle aggregation model into calculation. The simulation results were verified by comparing with existing experimental data sets. After that, a sensitivity analysis was performed to study parameters that affect permeability impairment. The simulation results show that our permeability impairment model—considering asphaltene deposition, aggregation, and pore connectivity loss—can accurately reproduce the experimental results with fewer fitting or empirical parameters needed. The sensitivity analysis shows that longer aggregation time, higher flow velocity, and bigger precipitation concentration will lead to a faster permeability reduction. The findings of this study can help provide better understanding of the permeability impairment caused by asphaltene deposition and pore blockage, which provides useful insights for prediction of production performance of oil wells.


Author(s):  
Benoit Stalin ◽  
Dongyang Yang ◽  
Yong Xia ◽  
Qing Zhou

This article investigates the influence of finite element model features on Fiber Reinforced Polymer (FRP) crushing simulation results. The study focuses on two composite material tube models using single shell modeling approach. The chosen material model is MAT58 (*MAT_LAMINATED_COMPOSITE_FABRIC) from the commercial finite element analysis software LS-Dyna. The baseline models geometry and material parameters come from a model calibration conducted for lightweight vehicle investigation. Five parameters are investigated. The mesh size and the number of integration point (NIP) are generic and ERODS, TSIZE and SOFT are the non-physical parameters of MAT58. This analysis aims at discuss the influence of these parameters on the simulation results focusing on the initial force peak and the average crush load, regarding results realism and instabilities such as large elements deformation and abnormal peak values. Also, the impact of the number of CPUs involved in the simulation calculation is presented. Recommendations are given to set the mesh size and the NIP. TSIZE value should be selected regarding the simulation time step. On the other hand, ERODS has to be adjusted manually. Both are determinant for simulation robustness. Further studies are proposed to find out the reasons of large element deformation.


2013 ◽  
Vol 321-324 ◽  
pp. 2419-2423
Author(s):  
Xiao Yan Li ◽  
Chun Hui Wang ◽  
Xian Qing Lv

By utilizing spatial biological parameterizations, the adjoint variational method was applied to a 3D marine ecosystem model (NPZD-type) and its adjoint model which were built on global scale based on climatological environment and data. When the spatially varying Vm (maximum uptake rate of nutrient by phytoplankton) was estimated alone, we discussed how would the distribution schemes of spatial parameterization and influence radius affected the results. The reduced cost function (RCF), the mean absolute error (MAE) of phytoplankton in the surface layer, and the relative error (RE) of Vm between given and simulated values decreased obviously. The influence of time step was studied then and we found that the assimilation recovery would not be more successful with a smaller time step of 3 hours compared with 6 hours.


Author(s):  
Saurabh Patwardhan ◽  
Pravin Nakod ◽  
Stefano Orsino ◽  
Carlo Arguinzoni

Abstract In this paper, high-fidelity large eddy simulations (LES) along with flamelet based combustion models are assessed to predict combustion dynamics in low-emissions gas turbine combustor. A model configuration of a single element lean-direct-injection (LDI) combustor from Purdue University [1] is used for the validation of simulation results. Two combustion models based on the flamelet concept, i.e., steady diffusion flamelet (SDF) model and flamelet generated manifold (FGM) model are employed to predict combustion instabilities. Simulations are carried out for two equivalence ratios of φ = 0.6, and 0.4 and the results in the form of mode shapes, peak to peak pressure amplitude and power spectrum density (PSD) are compared with the experimental data of Huang et al. [1]. The effect of variation in the time step size for transient simulations is also studied. The time step sizes corresponding to Acoustic Courant numbers of 4, 8 and 16 are tested. Further, two numerical solver options, i.e., pressure based segregated solver and pressure based coupled solver are used in understanding their effect on the solution convergence regarding the number of time steps required to reach the limit cycle of the pressure oscillations. An additional test for reducing the overall simulation time is explored using a truncated (half) calculation domain and applying an appropriate acoustic impedance boundary condition at the truncated location. The simulation results from this test for the equivalence ratio of φ = 0.6 are compared with the simulation results from the corresponding full domain test. Overall, the simulation results compare well with the experimental data and trends are captured accurately. A clear dominant acoustic mode of 4L is observed for the equivalence ratio of 0.6 that compares well with the experimental data. For the equivalence ratio of 0.4, simulation results show that there is no dominant frequency and the energy is distributed among the first five modes. It is consistent with the observations in the experiments. Both combustion models (SDF and FGM) used in this study capture the combustion instabilities accurately. It builds confidence in flamelet based combustion models for the use in combustion instability modeling which is traditionally done using finite rate chemistry models based on reduced kinetics.


Water ◽  
2018 ◽  
Vol 10 (9) ◽  
pp. 1269 ◽  
Author(s):  
Yun Choi ◽  
Mun-Ju Shin ◽  
Kyung Kim

The choice of the computational time step (dt) value and the method for setting dt can have a bearing on the accuracy and performance of a simulation, and this effect has not been comprehensively researched across different simulation conditions. In this study, the effects of the fixed time step (FTS) method and the automatic time step (ATS) method on the simulated runoff of a distributed rainfall–runoff model were compared. The results revealed that the ATS method had less peak flow variability than the FTS method for the virtual catchment. In the FTS method, the difference in time step had more impact on the runoff simulation results than the other factors such as differences in the amount of rainfall, the density of the stream network, or the spatial resolution of the input data. Different optimal parameter values according to the computational time step were found when FTS and ATS were used in a real catchment, and the changes in the optimal parameter values were smaller in ATS than in FTS. The results of our analyses can help to yield reliable runoff simulation results.


Sign in / Sign up

Export Citation Format

Share Document