Informing Components Development Innovations for Floating Offshore Wind Through Applied FMEA Framework

Author(s):  
Giovanni Rinaldi ◽  
Philipp Thies ◽  
Lars Johanning ◽  
Paul McEvoy ◽  
Georgios Georgallis ◽  
...  

Abstract Future offshore wind technology solutions will be floating to facilitate deep water locations. The EUH2020 funded project FLOTANT (Innovative, low cost, low weight and safe floating wind technology optimized for deep water wind sites) aims to address the arising technical and economic challenges linked to this progress. In particular, innovative solutions in terms of mooring lines, power cable and floating platform, specifically designed for floating offshore wind devices, will be developed and tested, and the benefits provided by these components assessed. In this paper a purpose-built Failure Modes and Effect Analysis (FMEA) technique is presented, and applied to the novel floating offshore wind components. The aim is to determine the technology qualification, identify the key failure modes and assess the criticality of these components and their relative contributions to the reliability, availability and maintainability of the device. This will allow for the identification of suitable mitigation measures in the development lifecycle, as well as an assessment of potential cost savings and impacts of the specific innovations. The methodology takes into account inputs from the components developers and other project partners, as well as information extracted from existing literature and databases. Findings in terms of components innovations, their main criticalities and related mitigation measures, and impacts on preventive and corrective maintenance, will be presented in order to inform current and future developments for floating offshore wind devices.

Author(s):  
Roger Slora ◽  
Stian Karlsen ◽  
Per Arne Osborg

There is an increasing demand for subsea electrical power transmission in the oil- and gas industry. Electrical power is mainly required for subsea pumps, compressors and for direct electrical heating of pipelines. The majority of subsea processing equipment is installed at water depths less than 1000 meters. However, projects located offshore Africa, Brazil and in the Gulf of Mexico are reported to be in water depths down to 3000 meters. Hence, Nexans initiated a development programme to qualify a dynamic deep water power cable. The qualification programme was based on DNV-RP-A203. An overall project plan, consisting of feasibility study, concept selection and pre-engineering was outlined as defined in DNV-OSS-401. An armoured three-phase power cable concept assumed suspended from a semi-submersible vessel at 3000 m water depth was selected as qualification basis. As proven cable technology was selected, the overall qualification scope is classified as class 2 according to DNV-RP-A203. Presumed high conductor stress at 3000 m water depth made basis for the identified failure modes. An optimised prototype cable, with the aim of reducing the failure mode risks, was designed based on extensive testing and analyses of various test cables. Analyses confirmed that the prototype cable will withstand the extreme loads and fatigue damage during a service life of 30 years with good margins. The system integrity, consisting of prototype cable and end terminations, was verified by means of tension tests. The electrical integrity was intact after tensioning to 2040 kN, which corresponds to 13 000 m static water depth. A full scale flex test of the prototype cable verified the extreme and fatigue analyses. Hence, the prototype cable is qualified for 3000 m water depth.


Author(s):  
Ying Min Low ◽  
Robin S. Langley

The global dynamic response of a deep water floating production system needs to be predicted with coupled analysis methods to ensure accuracy and reliability. Two types of coupling can be identified: one is between the floating platform and the mooring lines/risers, while the other is between the mean offset, the wave frequency, and the low frequency motions of the system. At present, it is unfeasible to employ fully coupled time domain analysis on a routine basis due to the prohibitive computational time. This has spurred the development of more efficient methods, including frequency domain approaches. A good understanding of the intricate coupling mechanisms is paramount for making appropriate approximations in an efficient method. To this end, a simplified two degree-of-freedom system representing the surge motion of a vessel and the fundamental vibration mode of the lines is studied for physical insight. Within this framework, the frequency domain equations are rigorously formulated, and the nonlinearities in the restoring forces and drag are statistically linearized. The model allows key coupling effects to be understood; among other things, the equations demonstrate how the wave frequency dynamics of the mooring lines are coupled to the low frequency motions of the vessel. Subsequently, the effects of making certain simplifications are investigated through a series of frequency domain analyses, and comparisons are made to simulations in the time domain. The work highlights the effect of some common approximations, and recommendations are made regarding the development of efficient modeling techniques.


Author(s):  
Luca Vita ◽  
Uwe S. Paulsen ◽  
Helge A. Madsen ◽  
Per H. Nielsen ◽  
Petter A. Berthelsen ◽  
...  

This paper deals with the design of a 5MW floating offshore Vertical Axis Wind Turbine (VAWT). The design is based on a new offshore wind turbine concept (DeepWind concept), consisting of a Darrieus rotor mounted on a spar buoy support structure, which is anchored to the sea bed with mooring lines [1]. The design is carried out in an iterative process, involving the different sub-components and addressing several conflicting constraints. The present design does not aim to be the final optimum solution for this concept. Instead, the goal is to have a baseline model, based on the present technology, which can be improved in the future with new dedicated technological solutions. The rotor uses curved blades, which are designed in order to minimize the gravitational loads and to be produced by the pultrusion process. The floating platform is a slender cylindrical structure rotating along with the rotor, whose stability is achieved by adding ballast at the bottom. The platform is connected to the mooring lines with some rigid arms, which are necessary to absorb the torque transmitted by the rotor. The aero-elastic simulations are carried out with Hawc2, a numerical solver developed at Risø-DTU. The numerical simulations take into account the fully coupled aerodynamic and hydrodynamic loads on the structure, due to wind, waves and currents. The turbine is tested in operative conditions, at different sea states, selected according to the international offshore standards. The research is part of the European project DeepWind (2010–2014), which has been financed by the European Union (FP7-Future Emerging Technologies).


Processes ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 1390
Author(s):  
Sung Youn Boo ◽  
Steffen Allan Shelley

This paper presents the design and analysis of a mooring buoy and its mooring systems to moor a floating platform mounting an arrayed Wave Energy Converters (WECs). The mooring buoy allows the WEC platform to weathervane around the mooring buoy freely by the prevailing environment directions, which enables consistent power generation. The WEC platform is connected to the buoy with synthetic hawsers, while station-keeping of the buoy is maintained with catenary mooring lines of chains tied to the buoy keel. The buoy also accommodates a power cable to transfer the electricity from the WEC platform to the shore. The WEC platform is designed to produce a total of 1.0 MW with multiple WECs installed in an array. Fully coupled time-domain analyses are conducted under the site sea states, including extreme 50 y and survival 100 y conditions. The buoy motions, mooring tensions and other design parameters are evaluated. Strength and fatigue designs of the mooring systems are validated with requirements according to industry standards. Global and local structural designs of the mooring buoy are carried out and confirm the design compliances.


2018 ◽  
Vol 140 (5) ◽  
Author(s):  
Jinsong Liu ◽  
Lance Manuel

As offshore wind turbines supported on floating platforms extend to deep waters, the various effects involved in the dynamics, especially those resulting from the influence of moorings, become significant when predicting the overall integrated system response. The combined influence of waves and wind affect motions of the structure and induce tensile forces in mooring lines. The investigation of the system response under misaligned wind-wave conditions and the selection of appropriate mooring systems to minimize the turbine, tower, and mooring system loads is the subject of this study. We estimate the 50-year return response of a semisubmersible platform supporting a 13.2 MW wind turbine as well as mooring line forces when the system is exposed to four different wave headings with various environmental conditions (wind speeds and wave heights). Three different mooring system patterns are presented that include 3 or 6 mooring lines with different interline angles. Performance comparisons of the integrated systems may be used to define an optimal system for the selected large wind turbine.


2015 ◽  
Vol 137 (3) ◽  
Author(s):  
Alexander D. W. Throop ◽  
Alexander K. Landauer ◽  
Alexander Martin Clark ◽  
Laurel Kuxhaus

Animal models for orthopaedic implant testing are well-established but morphologically dissimilar to human tibiae; notably, most are shorter. The purpose of this study was to quantitatively evaluate the morphology and mechanical properties of the cervine tibia, particularly with regard to its suitability for testing orthopaedic implants. Two endosteal and eleven periosteal measurements were made on 15 cervine tibiae. The mechanical strength in axial compression and torsion was measured using 11 tibiae. The cervine tibia is morphologically similar to the human tibia and more closely matches the length of the human tibia than current tibia models (ovine, porcine, and caprine). The distal epiphysis dimensions are notably different, but no more so than the current tibia models. The torsional stiffness of the cervine tibia is within the range of previously reported values for human tibiae. Furthermore, in many regions, cervine tibiae are abundant and locally available at a low cost. Given these mechanical and morphological data, coupled with potential cost savings if regionally available, the cervine tibia may be an appropriate model for orthopaedic implant testing.


Author(s):  
Teresa M. Adams ◽  
P. Robert Sianipar

A sensitivity analysis of the recommendations obtained from the maintenance, repair, and rehabilitation (MR&R) optimization model of the Pontis bridge management system (BMS) to changes in Wisconsin’s estimates of MR&R costs, transition probabilities, and discount factor is presented. The scope includes the MR&R actions for 25 bridge elements in Wisconsin. The analysis is based on scenarios of cost and transition probabilities that represent a range of low- to high-cost projects and slow to fast element deterioration. The potential cost savings per element from adopting special policies on extreme high- and low-cost projects were estimated. The analysis identified the MR&R actions that are sensitive to changes in cost or transition probability, the MR&R actions that are never recommended, and the cost and transition scenarios for which the optimal policy is to do nothing until failure. The optimal policies recommended by the BMS and the current practice at Wisconsin District 1 were compared. Recommendations for improving Wisconsin’s MR&R cost database are presented.


2021 ◽  
Author(s):  
Craig R Gage ◽  
Pierre F Liagre ◽  
Caspar N Heyl ◽  
Cesar Del Vecchio

The Perdido platform is a spar located in a water depth of 7,825 feet in the Alaminos Canyon Block 857in the Gulf of Mexico. The mooring system consists of nine mooring lines in three groups of three, spacedapproximately 120 degrees apart between each group. Each mooring line is composed of a platform chain,a multi-segment polyester rope including a 120 feet long test insert at the top, a ground chain, a pile chainand other associated connectors. The mooring lines are connected to suction piles. The Minimum BreakStrength for the Perdido polyester mooring line is 4,000 kips. Installation of the spar hull was completed inSeptember 2008 and the topsides was set in March 2009. The spar and its mooring system were originallydesigned for a twenty (20) year life. On May 4, 2019, mooring line # 6 (ML6) was contacted by a marine vessel down line and was severed.Contact occurred along the polyester test insert. A recovery effort was planned, and the mooring line wasreplaced in early June. The original ML6 was recovered from the seafloor on June 4, 2019 as a part of thatcampaign and submitted to an initial inspection. This paper is not intended to go into either the cause of the incident or the replacement of ML6 but willlook to the inspection of the recovered mooring line and explore its suitability for reuse. Initial inspection ofthe lines suggested minimal damage to the polyester rope segments and raised questions to the impacts of 10years of use. Testing was envisioned as a learning opportunity for the impact of service on polyester mooringand was reinforced by the potential cost savings that could be attained though reuse. A methodology wasdeveloped, supported by initial inspections and a suite of testing was performed. The results of these testsare presented in the following, along with a proposed process for assessing and considering reuse of a linefollowing a drop. Additionally, conclusions will be shared for the process, the results, and the potentialramifications for the industry.


Author(s):  
Frank Chou ◽  
Susobhan Ghosh ◽  
Kevin Huang

A concept of an innovative floating platform using a conical structure was originally developed for operation in arctic region. It is called as MCAD (MonoCone Arctic Drilling Platform). The conical structure is used to reduce ice-loading as it facilitates ice to break in flexure while riding the slope of the conical surface. For supporting the weight of the platform, equipment, and ballast, a base structure with sufficient buoyancy is added at the base of conical structure. To ensure the platform with adequate stability, a heavy (solid) ballasting system that can be lowered to adjust the vertical center of gravity of the platform is incorporated in the system. The conceptual platform configuration has been analyzed for a large payload of more than 25,000 ST operating in approximately 125 feet of water depth. In the winter season, the platform is subjected to more than 12,000 ST of ice load. For warmer season the platform has been designed to survive a 45 feet significant wave height with 80 knots wind, and a very strong current of 6 knots. To withstand such magnitude of ice forces, mooring system using 32 lines was designed. For lower ice loads in a milder environment, the number of mooring lines can be reduced considerably. For operating in the warmer season, the platform was analyzed for design environments of operating and survival conditions. The motion responses in these conditions were found to be excellent in comparison to other deepwater concepts in use. With the promising motion response results of the conceptual platform with such a high payload, the concept is expected to provide operating company an alternative for deepwater application as well. Since the concept has been developed for a very large payload, the excess payload may be utilized as storages of produced oil. Mooring system for operating in deep water has been developed, and has been compared with that of the system for arctic condition. This paper describes the concept identifying the salient features. The effects of various features on the design and platform performance are also described. The ballast system with its lowering system makes this concept attractive for easy installation without the assistance of a large derrick vessel, a significant reduction of installation time is also expected. Results of stability, motion and mooring analyses is presented in the paper as well. Preliminary structural analyses were carried out to confirm the viability of the concept in operational, installation and survival conditions.


Author(s):  
Casey Fontana ◽  
Sanjay Arwade ◽  
Don DeGroot ◽  
Spencer Hallowell ◽  
Charles Aubeny ◽  
...  

Abstract While the offshore wind industry has shown a steady trend towards floating turbines, costs of these systems remain high. A multiline anchor concept may significantly reduce the high cost of floating wind, in which floating turbines share anchors. This work investigates the potential cost benefit of implementing a multiline anchor system relative to the conventional single-line anchor system over a range of spatial parameters. The OC4 DeepCwind semisubmersible platform is used to design catenary mooring systems for different water depths and turbine spacings. In all cases, the maximum anchor force in the 3-line anchor system is less than or equal to that of the single-line anchor system. Cost models for the mooring lines, anchors, installation and geotechnical site investigation are presented and discussed. In a 100-turbine farm, the multiline anchor system results in a 9–19% reduction in stationkeeping costs, with high and low estimates for the cost models additionally included. Larger reductions in the combined line and anchor cost result from mooring system configurations with smaller ratios of water depth to turbine spacing. Due to perimeter effects in the multiline configuration, larger cost reductions can be achieved for larger farm sizes.


Sign in / Sign up

Export Citation Format

Share Document