Effect of Sinusoidal Oscillatory Flow on a Vertical Wall-Mounted Cylinder

2020 ◽  
Author(s):  
HaKun Jang ◽  
Celalettin Emre Ozdemir ◽  
Mayank Tyagi ◽  
Jun-Hong Liang

Abstract The purpose of this study is to numerically investigate the bed shear stress and near-bed mixing due to coherent vortex structures in the vicinity of a vertically wall-mounted circular cylinder subject to an imposed finite-depth oscillatory sinusoidal flow. Previous studies reveal that the Keulegan–Carpenter (KC) number influences the formation of lee-side wake vortex structures as well as the horseshoe vortex in front of a cylinder. Therefore, parametric studies in a moderately wide range of KC from 5 to 20 are numerically performed. In the present study, Direct Numerical Simulation (DNS) is conducted using the open-source software, OpenFOAM, that solves the three-dimensional unsteady incompressible Navier-Stokes equations using finite volume method. Nondimensional parameters used in the simulations are carefully chosen to represent the real physics. The numerical solutions are first validated using an analytical solution for the oscillating Stokes flow and the results are then systematically and quantitatively compared with the experimental measurements. The results show that the lee-side wake is significantly influenced by KC, and distinctive types of the lee-side wake are generated and classified based on KC. It is also found that both KC and the ratio of the thickness of the Stokes boundary layer to the water depth are heavily associated with the stability of the lee-side wake. In addition, the simulated size and lifespan of the horseshoe vortex agree well with the experimental data.

Author(s):  
Azita Soleymani ◽  
Eveliina Takasuo ◽  
Piroz Zamankhan ◽  
William Polashenski

Results are presented from a numerical study examining the flow of a viscous, incompressible fluid through random packing of nonoverlapping spheres at moderate Reynolds numbers (based on pore permeability and interstitial fluid velocity), spanning a wide range of flow conditions for porous media. By using a laminar model including inertial terms and assuming rough walls, numerical solutions of the Navier-Stokes equations in three-dimensional porous packed beds resulted in dimensionless pressure drops in excellent agreement with those reported in a previous study (Fand et al., 1987). This observation suggests that no transition to turbulence could occur in the range of Reynolds number studied. For flows in the Forchheimer regime, numerical results are presented of the lateral dispersivity of solute continuously injected into a three-dimensional bounded granular bed at moderate Peclet numbers. Lateral fluid dispersion coefficients are calculated by comparing the concentration profiles obtained from numerical and analytical methods. Comparing the present numerical results with data available in the literature, no evidence has been found to support the speculations by others for a transition from laminar to turbulent regimes in porous media at a critical Reynolds number.


1998 ◽  
Vol 120 (1) ◽  
pp. 72-75 ◽  
Author(s):  
V. N. Kurdyumov ◽  
E. Ferna´ndez

A correlation formula, Nu = W0(Re)Pr1/3 + W1(Re), that is valid in a wide range of Reynolds and Prandtl numbers has been developed based on the asymptotic expansion for Pr → ∞ for the forced heat convection from a circular cylinder. For large Prandtl numbers, the boundary layer theory for the energy equation is applied and compared with the numerical solutions of the full Navier Stokes equations for the flow field and energy equation. It is shown that the two-terms asymptotic approximation can be used to calculate the Nusselt number even for Prandtl numbers of order unity to a high degree of accuracy. The formulas for coefficients W0 and W1, are provided.


Author(s):  
Dominique Legendre ◽  
Catherine Colin ◽  
Typhaine Coquard

The three-dimensional flow around a hemispherical bubble sliding and growing on a wall in a viscous linear shear flow is studied numerically by solving the full Navier–Stokes equations in a boundary-fitted domain. The main goal of the present study is to provide a complete description of the forces experienced by the bubble (drag, lift and added mass) over a wide range of sliding and shear Reynolds numbers (0.01≤ Re b , Re α ≤2000) and shear rate (0≤ Sr ≤5). The drag and lift forces are computed successively for the following situations: an immobile bubble in a linear shear flow; a bubble sliding on the wall in a fluid at rest; and a bubble sliding in a linear shear flow. The added-mass force is studied by considering an unsteady motion relative to the wall or a time-dependent radius.


Author(s):  
Md. Readul Mahmud

The fluids inside passive micromixers are laminar in nature and mixing depends primarily on diffusion. Hence mixing efficiency is generally low, and requires a long channel length and longtime compare to active mixers. Various designs of complex channel structures with/without obstacles and three-dimensional geometries have been investigated in the past to obtain an efficient mixing in passive mixers. This work presents a design of a modified T mixer. To enhance the mixing performance, circular and hexagonal obstacles are introduced inside the modified T mixer. Numerical investigation on mixing and flow characteristics in microchannels is carried out using the computational fluid dynamics (CFD) software ANSYS 15. Mixing in the channels has been analyzed by using Navier–Stokes equations with water-water for a wide range of the Reynolds numbers from 1 to 500. The results show that the modified T mixer with circular obstacles has far better mixing performance than the modified T mixer without obstacles. The reason is that fluids' path length becomes longer due to the presence of obstacles which gives fluids more time to diffuse. For all cases, the modified T mixer with circular obstacle yields the best mixing efficiency (more than 60%) at all examined Reynolds numbers. It is also clear that efficiency increase with axial length. Efficiency can be simply improved by adding extra mixing units to provide adequate mixing. The value of the pressure drop is the lowest for the modified T mixer because there is no obstacle inside the channel. Modified T mixer and modified T mixer with circular obstacle have the lowest and highest mixing cost, respectively. Therefore, the current design of modified T with circular obstacles can act as an effective and simple passive mixing device for various micromixing applications.


2021 ◽  
Vol 15 ◽  
pp. 16-21
Author(s):  
D. G. Baek ◽  
J. H. Jung ◽  
H. S. Yoon

This study numerically carried out the propeller open water test (POW) by solving Navier-Stokes equations governing the three-dimensional unsteady incompressible viscous flow with the turbulence closure model of the Κ-ω SST model. Numerical simulations were performed at wide range of advance ratios. A great difference of velocity magnitude between the inner region and the outer region of the slipstream tube forms the thick and large velocity gradient which originates from the propeller tip and develops along the downstream. Eventually, the strong shear layer appears and plays the role of the slipstream boundary. As the advance ratio increases, the vortical structures originated from the propeller tips quickly decay. The contraction of the vortices trace is considerable with decreasing the advance ratio.


Author(s):  
Mustafa Koz ◽  
Serhat Yesilyurt

Microorganisms such as bacteria use their rotating helical flagella for propulsion speeds up to tens of tail lengths per second. The mechanism can be utilized for controlled pumping of liquids in microchannels. In this study, we aim to analyze the effects of control parameters such as axial span between helical rounds (wavelength), angular velocity of rotations (frequency), and the radius of the helix (amplitude) on the maximum time-averaged flow rate, maximum head, rate of energy transfer, and efficiency of the micropump. The analysis is based on simulations obtained from the three-dimensional time-dependent numerical model of the flow induced by the rotating spiral inside a rectangular-prism channel. The flow is governed by Navier-Stokes equations subject to continuity in time-varying domain due to moving boundaries of the spiral. Numerical solutions are obtained using a commercial finite-element package which uses arbitrary Lagrangian-Eulerian method for mesh deformations. Results are compared with asymptotic results obtained from the resistive-force-theory available in the literature.


Author(s):  
Arezou Jafari ◽  
S. Mohammad Mousavi

Numerical study of flow through random packing of non-overlapping spheres in a cylindrical geometry is investigated. Dimensionless pressure drop has been studied for a fluid through the porous media at moderate Reynolds numbers (based on pore permeability and interstitial fluid velocity), and numerical solution of Navier-Stokes equations in three dimensional porous packed bed illustrated in excellent agreement with those reported by Macdonald [1979] in the range of Reynolds number studied. The results compare to the previous work (Soleymani et al., 2002) show more accurate conclusion because the problem of channeling in a duct geometry. By injection of solute into the system, the dispersivity over a wide range of flow rate has been investigated. It is shown that the lateral fluid dispersion coefficients can be calculated by comparing the concentration profiles of solute obtained by numerical simulations and those derived analytically by solving the macroscopic dispersion equation for the present geometry.


2021 ◽  
Vol 143 (12) ◽  
Author(s):  
Sasuga Ito ◽  
Masato Furukawa ◽  
Kazutoyo Yamada ◽  
Kaito Manabe

Abstract Turbulence is one of the most important phenomena in fluid dynamics. Large eddy simulation (LES) generally allows us to analyze smaller eddies than when using simulations based on unsteady Reynolds-averaged Navier–Stokes equations (URANS). In addition, the numerical solutions of LES show good agreements with experiments and numerical solutions based on direct numerical simulation. URANS simulations are, however, frequently used in academia and industry because LES computations are much more expensive compared with URANS simulations. In this investigation, an optimization of unsolved coefficients of the k–ω two equations model is performed on the transonic flow around T106A low-pressure turbine cascade to improve the accuracy of turbulence prediction with URANS. For the optimization approach, two-dimensional URANS is combined with ensemble Kalman filter which is one of the data assimilation techniques. In the assimilation process, a time- and spanwise-averaged LES result is used as pseudo-experimental data. Three-dimensional URANS simulations are performed for the evaluation of the optimization effect. URANS simulations are also applied to a different turbine cascade flow for the evaluation of the robustness of the optimized coefficients. These URANS results confirmed that the optimized coefficients improve the accuracy of turbulence prediction.


2016 ◽  
Vol 799 ◽  
pp. 246-264 ◽  
Author(s):  
K. Seshasayanan ◽  
A. Alexakis

We study the linear stage of the dynamo instability of a turbulent two-dimensional flow with three components $(u(x,y,t),v(x,y,t),w(x,y,t))$ that is sometimes referred to as a 2.5-dimensional (2.5-D) flow. The flow evolves based on the two-dimensional Navier–Stokes equations in the presence of a large-scale drag force that leads to the steady state of a turbulent inverse cascade. These flows provide an approximation to very fast rotating flows often observed in nature. The low dimensionality of the system allows for the realization of a large number of numerical simulations and thus the investigation of a wide range of fluid Reynolds numbers $Re$, magnetic Reynolds numbers $Rm$ and forcing length scales. This allows for the examination of dynamo properties at different limits that cannot be achieved with three-dimensional simulations. We examine dynamos for both large and small magnetic Prandtl-number turbulent flows $Pm=Rm/Re$, close to and away from the dynamo onset, as well as dynamos in the presence of scale separation. In particular, we determine the properties of the dynamo onset as a function of $Re$ and the asymptotic behaviour in the large $Rm$ limit. We are thus able to give a complete description of the dynamo properties of these turbulent 2.5-D flows.


Sign in / Sign up

Export Citation Format

Share Document