Modelling and Analysis of Hydrodynamics of a Submerged Structure in Extreme Waves Using a SPH-Based Tool

2021 ◽  
Author(s):  
Mohammed Islam ◽  
Dong Cheol Seo ◽  
Wayne Raman-Nair

Abstract The applications of a Smoothed Particle Hydrodynamics (SPH)-based, a Finite Volume Method (FVM)-based and a Boundary Element Method (BEM)-based tools to investigate the nonlinear interactions between large waves and a submerged horizontal circular structure and to some extent a rectangular cylinder at various submergence depths in deep water conditions are presented. The main aim is to validate the Lagrangian technique based SPH tool to predict the wave-structure interaction forces under large waves. The features of typical force curves in a wave cycle, the magnitude of wave forces, and the influence of relative axis depth of the structure in deep water conditions are investigated, primarily using an open-sourced SPH tool. Simulations were carried out in 2D with one deepwater wave at multiple submergence depths. The water surface elevations are predicted at different near- and far-field locations. The time-averaged mean and the average amplitude of the horizontal and vertical forces acting on the cylindrical model at various submergence depths are plotted and then physically interpreted. The wave forces and surface elevations are compared with the available published experimental studies and CFD (both FVM and BEM) predictions. Good agreement between the SPH predictions and the measurements was obtained for the submerged body’s surface elevation and hydrodynamic forces at all submergence depths. The FVM tends to overestimate the wave forces compared to the SPH predictions and the measurements, particularly for the shallowly submerged structure when extreme wave breaking occurs. The BEM predictions are reasonable for the non-wave breaking cases.

1985 ◽  
Vol 107 (1) ◽  
pp. 18-23
Author(s):  
T. H. Dawson

Laboratory measurements of the total in-line forces on a fixed vertical 2-in-dia cylinder in deep-water regular and random waves are given and compared with predictions from the Morison equation. Results show, for regular waves with heights ranging from 2 to 22 in. and frequencies ranging from 0.4 to 0.9 Hz that the Morison equation, with Stokes wave theory and constant drag and inertia coefficients of 1.2 and 1.8, respectively, provides good agreement with the measured maximum wave forces. The force variation over the entire wave cycle is also well represented. The linearized Morison equation, with linear wave theory and the same coefficients likewise provides close agreement with the measured rms wave forces for irregular random waves having approximate Bretschneider spectra and significant wave heights from 5 to 14 in. The success of the constant-coefficient approximation is attributed to a decreased dependence of the coefficients on dimensionless flow parameters as a result of the circular particle motions and large kinematic gradients of the deep-water waves.


2012 ◽  
Vol 11 (1-2) ◽  
pp. 68 ◽  
Author(s):  
E. Didier ◽  
D. R. C. B. Neves ◽  
R. Martins ◽  
M. G. Neves

This work presents the new developments and the validation of a Smoothed Particle Hydrodynamics (SPH) numerical model used in the National Laboratory of Civil Engineering (Laboratório Nacional de Engenharia Civil - LNEC) for studies in coastal engineering processes. Although the model requires a high CPU time, it proved to be very promising in the simulation of complex flows, such as the wave-structure interaction and the wave breaking phenomenon. For the SPH model validation, physical modeling tests were performed in one LNEC’s flume to study the interaction between an impermeable structure and an incident regular wave. The comparison between numerical and experimental results, i.e. free surface elevation, overtopping volume and pressure, shows the good accuracy of the SPH model to reproduce the various phenomena involving on the wave propagation and interaction with the structure, namely the wave breaking, the wave overtopping and the pressure field on the structure.


Author(s):  
Steven J. Lind ◽  
Benedict D. Rogers ◽  
Peter K. Stansby

This paper presents a review of the progress of smoothed particle hydrodynamics (SPH) towards high-order converged simulations. As a mesh-free Lagrangian method suitable for complex flows with interfaces and multiple phases, SPH has developed considerably in the past decade. While original applications were in astrophysics, early engineering applications showed the versatility and robustness of the method without emphasis on accuracy and convergence. The early method was of weakly compressible form resulting in noisy pressures due to spurious pressure waves. This was effectively removed in the incompressible (divergence-free) form which followed; since then the weakly compressible form has been advanced, reducing pressure noise. Now numerical convergence studies are standard. While the method is computationally demanding on conventional processors, it is well suited to parallel processing on massively parallel computing and graphics processing units. Applications are diverse and encompass wave–structure interaction, geophysical flows due to landslides, nuclear sludge flows, welding, gearbox flows and many others. In the state of the art, convergence is typically between the first- and second-order theoretical limits. Recent advances are improving convergence to fourth order (and higher) and these will also be outlined. This can be necessary to resolve multi-scale aspects of turbulent flow.


2021 ◽  
Vol 9 (5) ◽  
pp. 520
Author(s):  
Zhenyu Liu ◽  
Zhen Guo ◽  
Yuzhe Dou ◽  
Fanyu Zeng

Most offshore wind turbines are installed in shallow water and exposed to breaking waves. Previous numerical studies focusing on breaking wave forces generally ignored the seabed permeability. In this paper, a numerical model based on Volume-Averaged Reynolds Averaged Navier–Stokes equations (VARANS) is employed to reveal the process of a solitary wave interacting with a rigid pile over a permeable slope. Through applying the Forchheimer saturated drag equation, effects of seabed permeability on fluid motions are simulated. The reliability of the present model is verified by comparisons between experimentally obtained data and the numerical results. Further, 190 cases are simulated and the effects of different parameters on breaking wave forces on the pile are studied systematically. Results indicate that over a permeable seabed, the maximum breaking wave forces can occur not only when waves break just before the pile, but also when a “secondary wave wall” slams against the pile, after wave breaking. With the initial wave height increasing, breaking wave forces will increase, but the growth can decrease as the slope angle and permeability increase. For inclined piles around the wave breaking point, the maximum breaking wave force usually occurs with an inclination angle of α = −22.5° or 0°.


1998 ◽  
Vol 17 (9-10) ◽  
pp. 963-985 ◽  
Author(s):  
Torben Fronval ◽  
Eystein Jansen ◽  
Haflidi Haflidason ◽  
Hans Petter Sejrup

2017 ◽  
Vol 140 (2) ◽  
Author(s):  
Jithin Jose ◽  
Olga Podrażka ◽  
Ove Tobias Gudmestad ◽  
Witold Cieślikiewicz

Wave breaking is one of the major concerns for offshore structures installed in shallow waters. Impulsive breaking wave forces sometimes govern the design of such structures, particularly in areas with a sloping sea bottom. Most of the existing offshore wind turbines were installed in shallow water regions. Among fixed-type support structures for offshore wind turbines, jacket structures have become popular in recent times as the water depth for fixed offshore wind structures increases. However, there are many uncertainties in estimating breaking wave forces on a jacket structure, as only a limited number of past studies have estimated these forces. Present study is based on the WaveSlam experiment carried out in 2013, in which a jacket structure of 1:8 scale was tested for several breaking wave conditions. The total and local wave slamming forces are obtained from the experimental measured forces, using two different filtering methods. The total wave slamming forces are filtered from the measured forces using the empirical mode decomposition (EMD) method, and local slamming forces are obtained by the frequency response function (FRF) method. From these results, the peak slamming forces and slamming coefficients on the jacket members are estimated. The breaking wave forces are found to be dependent on various breaking wave parameters such as breaking wave height, wave period, wave front asymmetry, and wave-breaking positions. These wave parameters are estimated from the wave gauge measurements taken during the experiment. The dependency of the wave slamming forces on these estimated wave parameters is also investigated.


Author(s):  
Soroush Abolfathi ◽  
Dong Shudi ◽  
Sina Borzooei ◽  
Abbas Yeganeh-Bakhtiari ◽  
Jonathan Pearson

This study develops an accurate numerical tool for investigating optimal retrofit configurations in order to minimize wave overtopping from a vertical seawall due to extreme climatic events and under changing climate. A weakly compressible smoothed particle hydrodynamics (WCSPH) model is developed to simulate the wave-structure interactions for coastal retrofit structures in front of a vertical seawall. A range of possible physical configurations of coastal retrofits including re-curve wall and submerged breakwater are modelled with the numerical model to understand their performance under different wave and structural conditions. The numerical model is successfully validated against laboratory data collected in 2D wave flume at Warwick Water Laboratory. The findings of numerical modelling are in good agreement with the laboratory data. The results indicate that recurve wall is more effective in mitigating wave overtopping and provides more resilience to coastal flooding in comparison to base-case (plain vertical wall) and submerged breakwater retrofit.


2021 ◽  
Vol 144 (2) ◽  
Author(s):  
Yuzhu Li ◽  
David R. Fuhrman

Abstract Instabilities of deep-water wave trains subject to initially small perturbations (which then grow exponentially) can lead to extreme waves in offshore regions. The present study focuses on the two-dimensional Benjamin–Feir (or modulational) instability and the three-dimensional crescent (or horseshoe) waves, also known as Class I and Class II instabilities, respectively. Numerical studies on Class I and Class II wave instabilities to date have been mostly limited to models founded on potential flow theory; thus, they could only properly investigate the process from initial growth of the perturbations to the initial breaking point. The present study conducts numerical simulations to investigate the generation and development of wave instabilities involving the wave breaking process. A computational fluid dynamics (CFD) model solving Reynolds-averaged Navier–Stokes (RANS) equations coupled with a turbulence closure model in terms of the Reynolds stress model is applied. Wave form evolutions, Fourier amplitudes, and the turbulence beneath the broken waves are investigated.


2021 ◽  
Author(s):  
Ting Cui ◽  
Arun Kamath ◽  
Weizhi Wang ◽  
Lihao Yuan ◽  
Duanfeng Han ◽  
...  

Abstract The correct estimation of wave loading on a cylinder in a cylinder group under different impact scenarios is essential to determine the structural safety of coastal and offshore structures. This scenario differs from the interaction of waves with a single cylinder but not a lot of studies focus on cylinder groups under different arrangements. In this study, the interaction between plunging breaking waves and cylinder groups in deep water is investigated using the two-phase flow model in REEF3D, an open-source computational fluid dynamics program. The Reynolds-averaged Navier-Stokes equation with the two equation k–Ω turbulence model is adopted to resolve the numerical wave tank, with free surface calculated using the level set method. In this study, focused waves in deep water were modeled with a fixed wave steepness method. Wave breaking occurs when the steepness of the wave crest front satisfies the breaking criteria. The model is validated by comparing the numerical wave forces and free surface elevation with measurements from experiments. The computational results show fairly good agreement with experimental data for both free surface elevation and wave forces. Four cases are simulated to investigate the interaction of breaking waves with a cylinder group with different relative distance, number of cylinders and arrangement. Results show that breaking wave forces on the upstream cylinder are smaller than on a single cylinder with a relative distance of one cylinder diameter. The wave forces on cylinders in the pile group are effected by the relative distance between cylinders. The staggered arrangement has a significant influence on the wave forces on the first and second cylinder. The interaction inside a cylinder group mostly happens between the neighbouring cylinders. These interactions are also effected by the relative distance and the numbers of the neighbouring cylinders.


Sign in / Sign up

Export Citation Format

Share Document