In-Line Forces on Vertical Cylinders in Deepwater Waves

1985 ◽  
Vol 107 (1) ◽  
pp. 18-23
Author(s):  
T. H. Dawson

Laboratory measurements of the total in-line forces on a fixed vertical 2-in-dia cylinder in deep-water regular and random waves are given and compared with predictions from the Morison equation. Results show, for regular waves with heights ranging from 2 to 22 in. and frequencies ranging from 0.4 to 0.9 Hz that the Morison equation, with Stokes wave theory and constant drag and inertia coefficients of 1.2 and 1.8, respectively, provides good agreement with the measured maximum wave forces. The force variation over the entire wave cycle is also well represented. The linearized Morison equation, with linear wave theory and the same coefficients likewise provides close agreement with the measured rms wave forces for irregular random waves having approximate Bretschneider spectra and significant wave heights from 5 to 14 in. The success of the constant-coefficient approximation is attributed to a decreased dependence of the coefficients on dimensionless flow parameters as a result of the circular particle motions and large kinematic gradients of the deep-water waves.

Author(s):  
R. Jayalekshmi ◽  
R. Sundaravadivelu ◽  
V. G. Idichandy

The effect of tether-riser dynamics on the response characteristics of deep water tension leg platforms in water depths 900 m and 1800 m under random waves is investigated using a developed nonlinear finite element analysis program in the time-domain. Updated Lagrangian coordinates and incremental iterative solution based on Newmark’s integration scheme are adopted. Linear wave theory is used. Relative velocity form of Morison’s equation is used for estimating the wave forces. Current forces are also included in the analysis. Results are reported in the form of statistical values of responses. The statistical values of responses are found to increase with water depth and significant increase is observed when risers are included.


2021 ◽  
Vol 33 (6) ◽  
pp. 275-286
Author(s):  
Jae-Sang Jung ◽  
Changhoon Lee

In this study, the analytical solution for diffraction near a vertical detached breakwater was suggested by superposing the solutions of diffraction near a semi-infinite breakwater suggested previously using linear wave theory. The solutions of wave forces acting on front, lee and composed wave forces on both side were also derived. Relative wave amplitude changed periodically in space owing to the interactions between diffracting waves and standing waves on front side and the interactions between diffracting waves from both tips of a detached breakwater on lee side. The wave forces on a vertical detached breakwater were investigated with monochromatic, uni-directional random and multi-directional random waves. The maximum composed wave force considering the forces on front and lee side reached maximum 1.6 times of wave forces which doesn’t consider diffraction. This value is larger than the maximum composed wave force of semi-infinite breakwater considering diffraction, 1.34 times, which was suggested by Jung et al. (2021). The maximum composed wave forces were calculated in the order of monochromatic, uni-directional random and multi-directional random waves in terms of intensity. It was also found that the maximum wave force of obliquely incident waves was sometimes larger than that of normally incident waves. It can be known that the considerations of diffraction, the composed wave force on both front and lee side and incident wave angle are important from this study.


1974 ◽  
Vol 1 (14) ◽  
pp. 109
Author(s):  
M. Fadhil Al-Kazily

Water waves exert a force on a pipeline which is placed within the zone of wave influence. This force is made up of a periodic force which is composed of a drag and an inertial force, and a non-periodic second order force which acts upward. The coefficients of mass C and drag C as defined by the "Morison equation" were evaluated for many wave and depth conditions and it was found that the coefficients vary with the wave heights, wave length, depth of the cylinder below still water surface, and within the wave cycle.


2018 ◽  
Vol 203 ◽  
pp. 01021
Author(s):  
Nurul 'Azizah Mukhlas ◽  
Noor Irza Mohd Zaki ◽  
Mohd Khairi Abu Husain ◽  
Gholamhossein Najafian

For offshore structural design, the load due to wind-generated random waves is usually the most important source of loading. While these structures can be designed by exposing them to extreme regular waves (100-year design wave), it is much more satisfactory to use a probabilistic approach to account for the inherent randomness of the wave loading. This method allows the statistical properties of the loads and structural responses to be determined, which is essential for the risk-based assessment of these structures. It has been recognized that the simplest wave generation is by using linear random wave theory. However, there is some limitation on its application as some of the nonlinearities cannot be explained when higher order terms are excluded and lead to underestimating of 100-year wave height. In this paper, the contribution of nonlinearities based on the second order wave theory was considered and being tested at a variety of sea state condition from low, moderate to high. Hence, it was proven that the contribution of nonlinearities gives significant impact the prediction of 100-year wave's design as it provides a higher prediction compared to linear wave theory.


Author(s):  
Jian-Fei Lu ◽  
Dong-Sheng Jeng

In this study, a coupled model is proposed to investigate dynamic response of a porous seabed and an offshore pile to ocean wave loadings. Both the offshore pile and the porous seabed are treated as a saturated poro-elastic medium, while the seawater is considered as a conventional acoustic medium. The coupled boundary element model is established by the continuity conditions along the interfaces between the three media. In the system, wave force is considered as an external load and it is evaluated via the wave function expansion method in the context of a linear wave theory. Numerical results show that the increase of the modulus ratio between the pile and the seabed can reduce the horizontal displacement of the pile and the pore pressures of the seabed around the pile. Furthermore, the maximum pore pressure of the seabed usually occurs at the upper part of the seabed around the pile.


Author(s):  
Hans Bihs ◽  
Muk Chen Ong

Two-dimensional (2D) numerical simulations are performed to investigate the flows past partially-submerged circular cylinders in free surface waves. The 2D simulations are carried out by solving the Unsteady Reynolds-Averaged Navier-Stokes (URANS) equations with the k-ω turbulence model. The level set method is employed to model the free-surface waves. Validation studies of a numerical wave tank have been performed by comparing the numerical results with the analytical results obtained from the linear-wave theory. Wave forces on the partially-submerged cylinders have been calculated numerically and compared with the published theoretical and experimental data under regular-wave conditions. The free-surface elevations around the cylinders have been investigated and discussed.


2015 ◽  
Vol 20 (2) ◽  
pp. 267-282
Author(s):  
A.K. Dhar ◽  
J. Mondal

Abstract Fourth order nonlinear evolution equations, which are a good starting point for the study of nonlinear water waves, are derived for deep water surface capillary gravity waves in the presence of second waves in which air is blowing over water. Here it is assumed that the space variation of the amplitude takes place only in a direction along which the group velocity projection of the two waves overlap. A stability analysis is made for a uniform wave train in the presence of a second wave train. Graphs are plotted for the maximum growth rate of instability wave number at marginal stability and wave number separation of fastest growing sideband component against wave steepness. Significant improvements are noticed from the results obtained from the two coupled third order nonlinear Schrödinger equations.


Author(s):  
Weiguang Bao ◽  
Fenfang Zhao ◽  
Takeshi Kinoshita

To evaluate wave forces and to estimate the motion of breakwater, a circular cylinder is investigated based on the linear wave theory in the present work. The cylinder possesses a porous sidewall, an impermeable bottom and a horizontal porous plate inside that is fixed in the cylinder to work as obstruct and make wave dissipation more effectively. To simplify the problem, the Darcy’s fine-pore model is applied to the boundary condition on the porous body surface. The boundary value problem is solved by means of the eigen-function expansion approach. The fluid domain is divided into three regions and different eigen-function series are used. The so-called dispersion relation for the region inside the cylinder is quite different from a conventional one due to the existence of the porous plate. It leads to eigen values of complex number. To obtain solutions for the radiation problems, particular solution should be constructed to take account of the normal velocity appearing on the porous boundary. The wave loads are evaluated by integrating the pressure difference on two sides of the wetted body surface. The theoretical works are in good consistence with the experimental results. The Haskind relations are examined for the porous body. It is found that the damping coefficient consists of two parts. In addition to the component of conventional wave-radiating damping, exists a second component caused by the porous effects.


1982 ◽  
Vol 1 (18) ◽  
pp. 108
Author(s):  
Bernard LeMehaute ◽  
James Walker ◽  
John Headland ◽  
John Wang

A method of calculating nonlinear wave induced forces and moments on piles of variable diameter is presented. The method is based on the Morrison equation and the linear wave theory with correction parameters to account for convective inertial effects in the wave field. These corrections are based on the stream function wave theory by Dean (1974). The method permits one to take into account the added wave force due to marine growth in the intertidal zone or due to a protective jacket, and can also be used to calculate forces on braces and an array of piles.


Author(s):  
Patrick Lynett ◽  
Philip L.-F. Liu ◽  
Hwung-Hweng Hwung ◽  
Wen-Son Ching

A set of model equations for water wave propagation is derived by piecewise integration of the primitive equations of motion through N arbitrary layers. Within each layer, an independent velocity profile is determined. With N separate velocity profiles, matched at the interfaces of the layers, the resulting set of equations have N+1 free parameters, allowing for an optimization with known analytical properties of water waves. The optimized two-layer model equations show good linear wave characteristics up to kh ≈8, while the second-order nonlinear behavior is well captured to kh ≈6. The three-layer model shows good linear accuracy to kh ≈14, and the four layer to kh ≈20. A numerical algorithm for solving the model equations is developed and tested against nonlinear deep-water wave-group experiments, where the kh of the carrier wave in deep water is around 6. The experiments are set up such that the wave groups, initially in deep water, propagate up a constant slope until reaching shallow water. The overall comparison between the multi-layer model and the experiment is quite good, indicating that the multi-layer theory has good nonlinear, as well has linear, accuracy for deep-water waves.


Sign in / Sign up

Export Citation Format

Share Document