Simulation and Diagnostics of the External and Internal Circulation Flows of Solids in a Biomass Fired CFB Boiler

Author(s):  
Daniel Ha¨ggsta˚hl ◽  
Catrin Bartusch ◽  
Erik Dahlquist ◽  
Shilie Weng

Ash related operational problems are very common in biomass fired boilers. Biomass naturally contains both sodium chloride and potassium chloride and theses compounds lower the melting temperature of the ash which may cause large operational problems with agglomeration and defluidization in Circulating Fluidized Bed (CFB) boilers. The number of biomass fired CFB-boilers for combined heat and power (CHP) production in the Scandinavian market is growing due to their good combustion efficiency, fuel flexibility and low emissions. The power companies are asking for a method to calculate the internal and external circulation flows of solids in the boiler and an accurate diagnostic method to detect initial agglomeration in order to be able to prevent the problem of defluidization that leads to large costs and loss of revenue when the boiler has to be shut down for cleaning. Two heat and mass balance based models have been developed in order to calculate the fuel flow and the internal and external solids circulation flows in a CFB boiler with internal heat exchangers (INTREX). The solids circulation model is divided into three parts: cyclone, combustion and INTREX chambers. Measurements used in the calculation are from commissioning tests on CFB-boiler 5 at Ma¨larEnergi in Va¨stera˚s, Sweden. The boiler was manufactured by Foster Wheeler OY in Finland and has a thermal heat output of 157 MW. The external solids flow at 100% load, with and without air humidification, is 215 kg/s and the internal solids circulation is 93 kg/s. The external solids circulation flow at 60% load is 30 kg/s and the internal solids circulation flow is 486 kg/s. At 60% load, there is no data available for validation, which means that this is more an estimate then a calculation. The calculated internal flow of solids is very sensitive to changes in the total heat flow in the INTREX chamber caused by agglomeration or combustion, whereas the external solids flow is not affected. Hence initial agglomeration and combustion can be detected. A simulated agglomeration in the INTREX chambers by decreasing the total heat flow by 1%, led to a decrease in the internal solids circulation flow by 11%. A simulation of combustion in the INTREX chamber of 0.5 kg/s of fuel entering the chamber corresponds to an increase in the total heat flow of 22% and a decrease in the calculated internal mass flow of 16%. The potential for using this method of diagnostics for detecting initial agglomeration is very promising.

Author(s):  
V.V. Maslensky ◽  
◽  
Y.I. Bulygin

The article checks the effectiveness of translucent enclosing structures of the tractor cab in reducing solar radiation. For this purpose, the value of the total heat flow entering the interior during the entire working day was determined, which was later compared with the hygienic standards. The result demonstrated an average low efficiency of the tractor cab sun protection. In this regard, the use of more effective shading elements and the use of glass with increased light and heat protection properties in light openings is proposed.


1963 ◽  
Vol 85 (3) ◽  
pp. 285-286 ◽  
Author(s):  
Y. T. Tsui ◽  
F. K. Tsou
Keyword(s):  

TAPPI Journal ◽  
2010 ◽  
Vol 9 (6) ◽  
pp. 24-30 ◽  
Author(s):  
NIKLAS BERGLIN ◽  
PER TOMANI ◽  
HASSAN SALMAN ◽  
SOLVIE HERSTAD SVÄRD ◽  
LARS-ERIK ÅMAND

Processes have been developed to produce a solid biofuel with high energy density and low ash content from kraft lignin precipitated from black liquor. Pilot-scale tests of the lignin biofuel were carried out with a 150 kW powder burner and a 12 MW circulating fluidized bed (CFB) boiler. Lignin powder could be fired in a powder burner with good combustion performance after some trimming of the air flows to reduce swirl. Lignin dried to 10% moisture content was easy to feed smoothly and had less bridging tendencies in the feeding system than did wood/bark powder. In the CFB boiler, lignin was easily handled and cofired together with bark. Although the filter cake was broken into smaller pieces and fines, the combustion was not disturbed. When cofiring lignin with bark, the sulfur emission increased compared with bark firing only, but most of the sulfur was captured by calcium in the bark ash. Conventional sulfur capture also occurred with addition of limestone to the bed. The sulfur content in the lignin had a significantly positive effect on reducing the alkali chloride content in the deposits, thus reducing the high temperature corrosion risk.


Energies ◽  
2020 ◽  
Vol 13 (5) ◽  
pp. 1092
Author(s):  
Hengli Zhang ◽  
Chunjiang Yu ◽  
Zhongyang Luo ◽  
Yu’an Li

The circulating fluidized bed (CFB) boiler is a mainstream technology of biomass combustion generation in China. The high flue gas flow rate and relatively low combustion temperature of CFB make the deposition process different from that of a grate furnace. The dynamic deposition process of biomass ash needs further research, especially in industrial CFB boilers. In this study, a temperature-controlled ash deposit probe was used to sample the deposits in a 12 MW CFB boiler. Through the analysis of multiple deposit samples with different deposition times, the changes in micromorphology and chemical composition of the deposits in each deposition stage can be observed more distinctively. The initial deposits mainly consist of particles smaller than 2 μm, caused by thermophoretic deposition. The second stage is the condensation of alkali metal. Different from the condensation of KCl reported by most previous literatures, KOH is found in deposits in place of KCl. Then, it reacts with SO2, O2 and H2O to form K2SO4. In the third stage, the higher outer layer temperature of deposits reduces the condensation rate of KOH significantly. Meanwhile, the rougher surface of deposits allowed more calcium salts in fly ash to deposit through inertial impact. Thus, the elemental composition of deposits surface shows an overall trend of K decreasing and Ca increasing.


Author(s):  
Matteo Bruzzone ◽  
Silvia Ravelli

It is well known that the Łagisza power plant in Poland is the world’s first supercritical circulating fluidized bed (CFB) boiler, whose commercial operation started on June 2009. It has attracted a great deal of interest and operational data are publicly available, therefore it has been chosen as the object of the present study aimed at assessing load and fuel flexibility of supercritical CFB plants. First, the thermal cycle was modelled, by means of the commercial code Thermoflex®, at nominal and part load conditions for validation purposes. After having verified the validity of the applied modelling and simulation tool, the advantage of having supercritical steam combined with CFB boiler over subcritical steam and pulverized coal (PC) boiler, respectively, was quantified in terms of electric efficiency. As a next step, the designed fuel, i.e. locally mined hard coal, was replaced with biomass: 100% biomass firing was taken into account in the case of subcritical CFB boiler whereas the maximum share of biomass with coal was set at 50% with supercritical CFB boiler, consistently with the guidelines provided by the world leading manufacturers of CFB units. A broad range of biomass types was tested to conceive mixtures of fuel capable of preserving quite high performance, despite the energy consumption in pretreatment. However, the overall efficiency penalty, due to biomass co-firing, was found to potentially undermine the benefit of supercritical steam conditions compared to conventional subcritical power cycles. Indeed, the use of low-quality biomass in thermal power generation based on steam Rankine cycle may frustrate efforts to push the steam cycle boundaries.


Sign in / Sign up

Export Citation Format

Share Document