Design and Fabrication of an Experimental Facility for High-Pressure Pool Boiling

Author(s):  
Nanxi Li ◽  
Amy Rachel Betz

In this work, we present the design and fabrication a high-pressure pool boiling facility to conduct pool boiling experiments on horizontal heated surfaces under elevated pressures, up to 20 bar. Previous research has shown that micro- and/or nano-structured surfaces and coated surfaces will increase heat transfer coefficients up to one order of magnitude at atmospheric pressure. However, most boiling applications are subjected to high pressure, especially in the power industry. Pressure inside a boiling water reactor in a nuclear power plant will reach as high as 75 atm (75.99 bar). In order to determine how heat transfer is enhanced at increased pressures, with deionized water and refrigerants, on modified surfaces, a special experimental setup needs to be designed and fabricated. Difficulties in making such an experimental setup come from stabilizing the system pressure, sealing the test setup and visualizing the boiling conditions in the vessel. Both advantages and disadvantages of this design will be discussed and possible methods for improvements will be proposed. Preliminary test results on a plane copper surface are also included. Future research will be focusing on boiling of water and refrigerants on micro-structured copper surfaces, graphene coated, and Teflon© coated surfaces under high pressure.

Author(s):  
Xizhen Ma ◽  
Wen Fu ◽  
Haijun Jia ◽  
Peiyue Li ◽  
Jun Li

The non-condensable gas is used to keep the pressure stable in the steam-gas pressurizer. The processes of heat and mass transfer during steam condensation in the presence of non-condensable gas play an important role and the thermal hydraulic characteristics in the pressurizer is particularly complicated due to the non-condensable gas. The effects of non-condensable gas on the process of heat and mass transfer during steam condensation were experimental investigated. A steam condensation experimental system under high pressure and natural convection was built and nitrogen was chosen in the experiments. The steam and nitrogen were considered in thermal equilibrium and shared the same temperature in the vessel under natural convection. In the experiments, the factors, for instance, pressure, mass fraction of nitrogen, subcooling of wall and the distribution of nitrogen in the steam, had been taken into account. The rate of heat transfer of steam condensation on the vertical wall with nitrogen was obtained and the heat transfer coefficients were also calculated. The characteristics curve of heat and mass transfer during steam condensation with non-condensable gas under high pressure were obtained and an empirical correlation was introduced to calculated to heat transfer coefficient of steam condensation with nitrogen which the calculation results showed great agreement with the experimental data.


Author(s):  
Koichi Araga ◽  
Keisuke Okamoto ◽  
Keiji Murata

This paper presents an experimental investigation of the forced convective boiling of refrigerant HCFC123 in a mini-tube. The inner diameters of the test tubes, D, were 0.51 mm and 0.30 mm. First, two-phase frictional pressure drops were measured under adiabatic conditions and compared with the correlations for conventional tubes. The frictional pressure drop data were lower than the correlation for conventional tubes. However, the data were qualitatively in accord with those for conventional tubes and were correlated in the form φL2−1/Xtt. Next, heat transfer coefficients were measured under the conditions of constant heat flux and compared with those for conventional tubes and for pool boiling. The heat transfer characteristics for mini-tubes were different from those for conventional tubes and quite complicated. The heat transfer coefficients for D = 0.51 mm increased with heat flux but were almost independent of mass flux. Although the heat transfer coefficients were higher than those for a conventional tube with D = 10.3 mm and for pool boiling in the low quality region, they decreased gradually with increasing quality. The heat transfer coefficients for D = 0.30 mm were higher than those for D = 0.51 mm and were almost independent of both mass flux and heat flux.


Author(s):  
Ibrahim Eryilmaz ◽  
Sinan Inanli ◽  
Baris Gumusel ◽  
Suha Toprak ◽  
Cengiz Camci

This paper presents the preliminary results of using artificial neural networks in the prediction of gas side convective heat transfer coefficients on a high pressure turbine blade. The artificial neural network approach which has three hidden layers was developed and trained by nine inputs and it generates one output. Input and output data were taken from an experimental research program performed at the von Karman Institute for Fluid Dynamics by Camci and Arts [5,6] and Camci [7]. Inlet total pressure, inlet total temperature, inlet turbulence intensity, inlet and exit Mach numbers, blade wall temperature, incidence angle, specific location of measurement and suction/pressure side specification of the blade were used as input parameters and calculated heat transfer coefficient around a rotor blade used as output. After the network is trained with experimental data, heat transfer coefficients are interpolated for similar experimental conditions and compared with both experimental measurements and CFD solutions. CFD analysis was carried out to validate the algorithm and to determine heat transfer coefficients for a closely related test case. Good agreement was obtained between CFD results and neural network predictions.


2003 ◽  
Vol 125 (6) ◽  
pp. 1087-1095 ◽  
Author(s):  
H. Louahlia-Gualous ◽  
P. K. Panday ◽  
E. A. Artioukhine

This article treats the local heat transfer for nucleate pool boiling around the cylinder using the inverse heat conduction analysis. The physical model considers a half section of a cylinder with unknown surface temperature and heat flux density. The iterative regularization and the conjugate gradient methods are used for solving the inverse analysis. The local Nusselt number profiles for nucleate pool boiling are presented and analyzed for different electric heat. The mean Nusselt number estimated by IHCP is closed with the measured values. The results of IHCP are compared to those of Cornewell and Houston (1994), Stephan and Abdelsalam (1980) and Memory et al. (1995). The influence of the error of the measured temperatures and the error in placement of the thermocouples are studied.


1997 ◽  
Vol 119 (1) ◽  
pp. 142-151 ◽  
Author(s):  
Shou-Shing Hsieh ◽  
Chun-Jen Weng

Measurements of pool-boiling heat transfer coefficients in distilled water and R-134a/oil mixtures with up to 10 percent (by weight) miscible EMKARATE RL refrigeration lubricant oil are extensively studied for a smooth tube and four rib-roughened tubes (rib pitch 39.4 mm, rib height 4 mm, rib width 15 mm, number of rib element 8, rib angle 30 deg–90 deg). Boiling data of pure refrigerants and oil mixtures, as well as the influences of heat flux level on heat transfer coefficient, are presented and discussed. A correlation is developed for predicting the heat transfer coefficient for both pure refrigerants and refrigerant-oil mixtures. Moreover, boiling visualizations were made to broaden our fundamental understanding of the pool boiling heat transfer mechanism for rib roughened surfaces with pure refrigerants and refrigerant-oil mixtures.


2014 ◽  
Vol 136 (4) ◽  
Author(s):  
J. Jung ◽  
S. J. Kim ◽  
J. Kim

Experimental work was undertaken to investigate the process by which pool-boiling critical heat flux (CHF) occurs using an IR camera to measure the local temperature and heat transfer coefficients on a heated silicon surface. The wetted area fraction (WF), the contact line length density (CLD), the frequency between dryout events, the lifetime of the dry patches, the speed of the advancing and receding contact lines, the dry patch size distribution on the surface, and the heat transfer from the liquid-covered areas were measured throughout the boiling curve. Quantitative analysis of this data at high heat flux and transition through CHF revealed that the boiling curve can simply be obtained by weighting the heat flux from the liquid-covered areas by WF. CHF mechanisms proposed in the literature were evaluated against the observations.


Author(s):  
Kuang-Han Chu ◽  
Ryan Enright ◽  
Evelyn N. Wang

We experimentally investigated pool boiling on microstructured surfaces which demonstrate high critical heat flux (CHF) by enhancing wettability. The microstructures were designed to provide a wide range of well-defined surface roughness to study roughness-augmented wettability on CHF. A maximum CHF of 196 W/cm2 and heat transfer coefficient (h) greater than 80 kW/m2K were achieved. To explain the experimental results, a model extended from a correlation developed by Kandlikar was developed, which well predicts CHF in the complete wetting regime where the apparent liquid contact angle is zero. The model offers a first step towards understanding complex pool boiling processes and developing models to accurately predict CHF on structured surfaces. The insights gained from this work provide design guidelines for new surface technologies with higher heat removal capability that can be effectively used by industry.


1999 ◽  
Author(s):  
K. N. Rainey ◽  
S. M. You

Abstract The present research is an experimental study of “double enhancement” behavior in pool boiling from heater surfaces simulating microelectronic devices immersed in saturated FC-72 at atmospheric pressure. The term “double enhancement” refers to the combination of two different enhancement techniques: a large-scale area enhancement (square pin fin array) and a small-scale surface enhancement (microporous coating). Fin lengths were varied from 0 (flat surface) to 8 mm. Effects of this double enhancement technique on critical heat flux (CHF) and nucleate boiling heat transfer in the horizontal orientation (fins are vertical) are investigated. Results showed significant increases in nucleate boiling heat transfer coefficients with the application of the microporous coating to the heater surfaces. CHF was found to be relatively insensitive to surface microstructure for the finned surfaces except in the case of the surface with 8 mm long fins. The nucleate boiling and CHF behavior has been found to be the result of multiple, counteracting mechanisms: surface area enhancement, fin efficiency, surface microstructure (active nucleation site density), vapor bubble departure resistance, and re-wetting liquid flow resistance.


Sign in / Sign up

Export Citation Format

Share Document