scholarly journals A Technique for Dynamic Analyses of Containers With Locking-Ring Closures

Author(s):  
Tsu-te Wu

The explicit method of the finite-element analysis is capable of analyzing the dynamic responses of a complex structure with complicated contact conditions. The method has been widely used in evaluating the dynamic responses of shipping package for radioactive materials. However, the previous analyses focused on the stresses and deformations of the structure components subjected impact loads and the possibility of the locking-ring closure separating from the drum body is not accounted for. The major difficulty for applying the explicit method to a container with a locking-ring closure is that the phenomenon of pre-loading a locking-ring closure is a static process; whereas, the explicit method involves the propagation of stress waves in the structure and thus is only applicable to dynamic analyses. The purpose of the present paper is to propose a technique that extends the application of the explicit finite-element method to the dynamic analysis of the container pre-loaded by a lock-ring. Unlike the conventional dynamic analysis by the explicit method that only needs one load step, the proposed technique requires three sequential procedure steps (not load steps) to complete an entire analysis. Furthermore, one procedure step may consist of two load steps. The paper discusses the procedures of the proposed technique in details. The application of the technique is illustrated by an example problem. The adequacy of the technique is also verified.

Author(s):  
Weijun Xu ◽  
Tianyi Chen ◽  
Chenfeng Li ◽  
Xueqian Zhou ◽  
Feng Liu

Abstract Submerged pressure shell’s corrosion situation is more serious due to bad work environment, complex structure and difficulty of maintenance. Based on the analysis of calculation method of submerged pressure shell structures with non-corrosion, the calculation formula of pressure shell with pitting corrosion is given. The Finite Element Model is constructed and its residual strength is investigated. The relationships between shell stress and some parameters, such as radius of corrosion pit, depth of corrosion pit and location of corrosion pit are studied. Based on the finite element analysis results, the effect of radius of corrosion pit on the stress of pressure shell with pitting corrosion is analyzed. Furthermore, the influence coefficients of residual strength of pressure shell due to depth and location of pitting corrosion are determined, which provide a reference for the strength evaluation of submerged pressure shell with pitting corrosion.


2011 ◽  
Vol 215 ◽  
pp. 89-94 ◽  
Author(s):  
Jing Zhu Pang ◽  
Bei Zhi Li ◽  
Jian Guo Yang ◽  
Zhou Ping Wu

This paper presents the effects of spindle system configuration on the dynamic and static characteristics of high speed grinding. A 3D physical mode of high-speed grinding motorized spindle system with rotation speed of 150m/s was provided. The motorized spindle system consists of bearings, rotor, stator, spindle housing and grinding wheel. Based on the finite element method (FEM), the static characteristics, dynamic and the transient response are analyzed based on the finite element analysis software NASTRAN. It is shown that the spindle overhanging, bearing span have a significant effort on spindle deflection. The dynamic analysis shows no resonance will happen during its speed range. The methods and solutions for the motorized spindle system design and engineering applications was given in this paper.


2011 ◽  
Vol 11 (06) ◽  
pp. 1059-1088 ◽  
Author(s):  
KESHAV K. SANGLE ◽  
KAMAL M. BAJORIA ◽  
RAJSHEKAR S. TALICOTTI

This paper presents the finite element buckling and dynamic analyses of two-dimensional (2D) single frames and three-dimensional (3D) frames of cold-formed sections with semirigid connections used in the conventional pallet racking system. The results of buckling analysis for the single 2D frames are compared with those from the experimental study and effective length approach given by RMI. The finite element model used for the single 2D plane frame is further extended to 3D frames with semirigid connections, for which the buckling analysis results are obtained. The buckling and dynamic analyses are carried out using ANSYS for 18 types of developed column sections. The stiffness of the semirigid connection is determined by both the single and double cantilever test methods, along with the nonlinear finite element analysis. Further, an equivalent single degree-of-freedom model is proposed for simulating the seismic behavior of the storage rack in the down-aisle direction, aimed at developing simplified equations for the fundamental period, base shear, and top displacement of the rack. A parametric study is carried out to compute the fundamental period and mode shape. The transient dynamic analysis is also performed for evaluating the impact of the forklift on columns of the frame.


2013 ◽  
Vol 465-466 ◽  
pp. 699-703 ◽  
Author(s):  
S. Hassan ◽  
Erween Abdul Rahim ◽  
Zazuli Mohid ◽  
N.M. Warap

Dynamic analysis is very important in developing machine structure to sustain the required accuracy, reliability and productivity. The objective of this study is to conduct a dynamic and modal analyses of micro-milling machine. The machine designs were predicted by comparing the Finite Element Analysis (FEA) using ANSYS software and experimental hammer testing. Two micro-milling machine designs have been proposed. Natural frequency and mode shape was analyzed in modal analysis which show the result that first mode recorded frequency of 92.086 Hz for design A and 154.78 Hz for design B. Natural frequency of design B was higher than design A. From the comparision, it can be concluded that Design B was selected as a best design.


2011 ◽  
Vol 105-107 ◽  
pp. 444-447 ◽  
Author(s):  
Zhong Jun Yin ◽  
Lei Zhang ◽  
Bing Chen

The virtual prototype model of the coal screen is established with Pro/E and RecurDyn based on virtual prototype technology. The kinematic characteristics of different points are obtained by simulation. At the same time, the finite element analysis model of a screen box is established with ANSYS. Modal analysis and harmonic analysis have been carried out based on dynamic analysis technology. According to the results of dynamic finite element simulation, some corresponding improvements were made for the structure of screen box, which makes the stress concentration region of screen box decreased and more uniform stress distribution to meet the design requirements.


Author(s):  
Arnav Gupta

Abstract: A motorcycle helmet is the best protective headgear for the prevention of head injuries due to direct cranial impact. A finite element model based on realistic geometric features of a motorcycle helmet is established, and explicit finite element code is employed to simulate dynamic responses at different impact velocities. Peak acceleration and Head injury criterion values derived from the head form are used to assess the protective performance of the helmet. We have concluded that the dynamic responses of the helmet dramatically vary with impact velocity, as well as the mechanical properties of the outer shell and energy- absorbing liner. At low velocities e.g. 8.3 m/s, the shell stiffness and liner density should be relatively low to diminish head- contact force. At high velocity e.g. 11m/s, a stiffer shell and denser liner offer superior protection against head injuries. Different tests were performed in ansys explicit dynamics solver by taking different materials and calculating PLA, Head Injury Criteria, K.E, P.E, contact energy etc. The results obtained for different materials were then compared with easy other to draw the necessary conclusion’s. Keywords: Peak Linear Acceleration (PLA), Head Injury Criteria.


2014 ◽  
Vol 19 (2) ◽  
pp. 379-395
Author(s):  
G. Tiwari ◽  
M.A. Iqbal ◽  
P.K. Gupta

Abstract Three-dimensional numerical simulations were carried out with the ABAQUS/explicit finite element code to study the influence of target boundary conditions on its ballistic limit. 1mm thick 1100-H12 aluminum target of 255 mm span diameter was hit by 19 mm diameter and 50.8 mm length blunt nosed projectile. The mass of the projectile was kept as 52.5 gm. The boundary condition effects on the ballistic limit were investigated by varying the target periphery boundary condition as fully clamped and partially clamped target (75%, 50% and 25%) subjected to projectile impact. The energy absorption and ballistic limit of the target was found to be significantly affected by the boundary conditions. Some of the finite element analysis results were compared with experimental and numerical results reported in international literature and a good agreement between the two was found.


2021 ◽  
Vol 63 (5) ◽  
pp. 402-410
Author(s):  
Oğur İynen ◽  
Abdul Kadir Ekşi ◽  
Mustafa Özdemir ◽  
Hamza Kemal Akyıldız

Abstract Cutting forces play a significant role in machining because they directly affect the mechanics of machining, the energy requirements, and the tool stability required. In this study, the cutting forces occurring during the turning of AISI 4340 material with 30 Rockwell C hardness scale have been analyzed both experimentally and numerically. Many types of research have been conducted via 2-D simulation using the finite element analysis method. In other words, in most studies, the workpiece was modeled as a flat specimen. Therefore, this paper presents a real 3-D turning simulation model using cylindrical specimens. The cutting forces were measured using a Kistler 9129AA model piezoelectric dynamometer. The ABAQUS/Explicit finite element method was used, and a model by Johnson and Cook was assigned as a material model in the numerical analysis. A new PVD AlTiN coated carbide insert was incorporated to prevent wear. Experimental results obtained from cutting tests were compared with numerical results to establish the accuracy of the FEM. It was observed that experimental and numerical results overlapped each other. Thus, this method can be used directly in the industry to reduce high processing costs.


Sign in / Sign up

Export Citation Format

Share Document