Behavior of Embedded Steel Plates in Reinforced Concrete: New Design Basis

Author(s):  
Sekhar K. Chakrabarti

The behavior and capacity of embedded steel plates in reinforced concrete structures, are studied using a finite-element model developed for non-linear analysis. Strength interaction diagrams and moment-rotation charts useful for analysis and design of such plates, are developed for eccentric compressive and eccentric tensile loading, at failure and collapse. Capacities for a common class of embedded plates with variation in its thickness are computed for the cases of combined eccentric compression and shear.

2017 ◽  
Vol 2017 ◽  
pp. 1-9 ◽  
Author(s):  
Mario Bermejo ◽  
Anastasio P. Santos ◽  
José M. Goicolea

This paper describes two practical methodologies for modeling the collapse of reinforced concrete structures. They are validated with a real scale test of a two-floor structure which loses a bearing column. The objective is to achieve accurate simulations of collapse phenomena with moderate computational cost. Explicit finite element models are used with Lagrangian meshes, modeling concrete, and steel in a segregated manner. The first model uses 3D continuum finite elements for concrete and beams for steel bars, connected for displacement compatibility using a penalty method. The second model uses structural finite elements, shells for concrete, and beams for steel, connected in common nodes with an eccentricity formulation. Both are capable of simulating correctly the global behavior of the structural collapse. The continuum finite element model is more accurate for interpreting local failure but has an excessive computational cost for a complete building. The structural finite element model proposed has a moderate computational cost, yields sufficiently accurate results, and as a result is the recommended methodology.


2018 ◽  
Vol 146 ◽  
pp. 02003
Author(s):  
Sergej Kudrjavtsev

The article presents the results of verification calculations of carrying capacity of building structures of “White Tower”. This former water tower is a constructivist monument of state-wide significance and one of the oldest reinforced concrete structures in Yekaterinburg. Currently the design of adaptation of the object as a museum or an exhibition hall is being developed. The purpose of the study is to answer the question: Will the structures of the 1930s withstand the loads regulated by modern building codes? The results of carried out field inspections and a finite-element model of the LIRA-SAPR software are also described. The data of the weakest sections and elements of the structure are presented. The result of the work will allow carrying out a complex of efforts for the restoration of building structures of the object and will help in deciding whether to develop one or another alternative for its adaptation.


2020 ◽  
Vol 23 (9) ◽  
pp. 1934-1947
Author(s):  
Dapeng Chen ◽  
Li Chen ◽  
Qin Fang ◽  
Yuzhou Zheng ◽  
Teng Pan

The bending behavior of reinforced concrete beams under uniform pressure is critical for the research of the blast-resistance performance of structural components under explosive loads. In this study, a bending test of five reinforced concrete beams with the dimensions of 200 mm (width) × 200 mm (depth) × 2500 mm (length) under uniform load produced by a specific cylinder-shaped rubber bag filled with air or water was conducted to investigate their flexural performances. An air bag load was applied to three of the reinforced concrete beams, a water bag load was applied to one reinforced concrete beam, and the remainder beam was subjected to the 4-point bending load. The experimental results highlighted that the air bag and water bag loading methods can be used to effectively apply uniform loads to reinforced concrete beams. Moreover, the stiffness of the air bag was improved by 123% in accordance with the initial pressure increases from 0.15 to 0.45 MPa. In addition, a finite element model of the test loading system was established using ABAQUS/Standard software. Moreover, the critical factors of the air bag loading method were analyzed using the numerical model. The calculated results were found to be in good agreement with the test data. The established finite element model can therefore be used to accurately simulate the action performances of the uniform loading technique using rubber bags filled with air or water.


1993 ◽  
Vol 20 (5) ◽  
pp. 754-759 ◽  
Author(s):  
S. F. Ng ◽  
M. S. Cheung ◽  
J. Q. Zhao

A layered finite element model with material nonlinearity is developed to trace the nonlinear response of horizontally curved reinforced concrete box-girder bridges. Concrete is treated as an orthotropic nonlinear material and reinforcement is modeled as an elastoplastic strain-hardening material. Due to the fact that the flanges and webs of the structure are much different both in configuration and in the state of stresses, two types of facet shell elements, namely, the triangular generalized conforming element and the rectangular nonconforming element, are adopted to model them separately. A numerical example of a multi-cell box-girder bridge is given and the results are compared favourably with the experimental results previously obtained. Key words: finite element method, curved box-girder bridges, reinforced concrete, nonlinear analysis.


Sign in / Sign up

Export Citation Format

Share Document