Impact of Cavity on Sunroof Buffeting: A Two Dimensional CFD Study

Author(s):  
Chang-Fa An ◽  
Seyed Mehdi Alaie ◽  
Michael S. Scislowicz

Driven by fluid dynamics principles, the concept for buffeting reduction, a cavity installed at the leading edge of the sunroof opening, is analyzed. The cavity provides a room to hold the vortex, shed from upstream, and prevents the vortex from escaping and from directly intruding into the cabin. The concept has been verified by means of a two dimensional simulation for a production SUV using the CFD software — FLUENT. The simulation results show that the impact of the cavity is crucial to reduce buffeting. It is shown that the buffeting level may be reduced by 3 dB by adding a cavity to the sunroof configuration. Therefore, the cavity could be considered as a means of buffeting reduction, in addition to the three currently-known concepts: wind deflector, sunroof glass comfort position and cabin venting. Thorough understanding of the buffeting mechanism helps explain why and how the cavity works to reduce buffeting. Investigation of the buffeting-related physics provides a deep insight into the flow nature and, therefore, a useful hint to geometry modification for buffeting reduction. The buffeting level may be further reduced by about 4 dB or more by cutting the corners of the sunroof opening into smooth ramps, guided by ideas coming from careful examining the physics of flow. More work including three dimensional simulation and wind tunnel experiment should follow in order to develop more confidence in the functionality of the cavity to hopefully promote this idea to the level that it can be utilized in a feasible way to address sunroof buffeting.

1995 ◽  
Vol 291 ◽  
pp. 369-392 ◽  
Author(s):  
Ronald D. Joslin

The spatial evolution of three-dimensional disturbances in an attachment-line boundary layer is computed by direct numerical simulation of the unsteady, incompressible Navier–Stokes equations. Disturbances are introduced into the boundary layer by harmonic sources that involve unsteady suction and blowing through the wall. Various harmonic-source generators are implemented on or near the attachment line, and the disturbance evolutions are compared. Previous two-dimensional simulation results and nonparallel theory are compared with the present results. The three-dimensional simulation results for disturbances with quasi-two-dimensional features indicate growth rates of only a few percent larger than pure two-dimensional results; however, the results are close enough to enable the use of the more computationally efficient, two-dimensional approach. However, true three-dimensional disturbances are more likely in practice and are more stable than two-dimensional disturbances. Disturbances generated off (but near) the attachment line spread both away from and toward the attachment line as they evolve. The evolution pattern is comparable to wave packets in flat-plate boundary-layer flows. Suction stabilizes the quasi-two-dimensional attachment-line instabilities, and blowing destabilizes these instabilities; these results qualitatively agree with the theory. Furthermore, suction stabilizes the disturbances that develop off the attachment line. Clearly, disturbances that are generated near the attachment line can supply energy to attachment-line instabilities, but suction can be used to stabilize these instabilities.


Author(s):  
Nan Hu ◽  
Li-Wu Fan

Abstract Bother two-dimensional (2D) and three-dimensional (3D) simulations on two example melting problems, i.e., melting in a differentially-heated rectangular cavity and constrained melting in a horizontal cylindrical capsule, were carried out to investigate the rationality of 2D simplification. The effects of thermophysical properties of the phase change material, size of the container along the direction perpendicular to the 2D cross-section, as well as wall superheat were taken into consideration for a systematic and detailed comparison. It was shown that a small length of the container perpendicular to 2D plane will result in a confine space to limit the development of velocity distribution (i.e., parabolic velocity profile) due to the end effects, leading to to an almost identical melting rate to that obtained by the 2D simplified case. A larger size indicates stronger thermal convection (bulk uniform velocity profile) and faster melting rate. When fixing a large size of the container perpendicular to the 2D plane, decreasing the heating temperature and increasing the viscosity of liquid PCM (e.g., by adding nanoparticles) reduce the discrepancy between 2D and 3D simulation results.


2018 ◽  
Vol 20 (4) ◽  
pp. 441-451 ◽  
Author(s):  
Namho Kim ◽  
Insuk Ko ◽  
Kyoungdoug Min

The necessity for the use of one-dimensional simulation is growing because cost and time required for hardware optimization and optimal calibration of engines based on experiment are increasing dramatically as engines are equipped with growing numbers of technologies. For one-dimensional simulation results to be more reliable, the accuracy and applicability of the combustion model of a one-dimensional simulation tool must be guaranteed. Because the combustion process in a spark ignition engine is driven by the turbulence, many of existing models focus on the prediction of mean turbulence intensity. Although many successes in the previous models can be found, the previous models contain a large number of adjustable constants or require information supplemented from three-dimensional computational fluid dynamics simulation results. For improved applicability of a model, the number of adjustable constants and inputs to the model must be kept as small as possible. Thus, in this study, a new zero-dimensional (0D) turbulence model was proposed that requires information on the basic characteristics of the engine geometry and has only one adjustable constant. The model was developed based on the energy cascade model with additional consideration of following aspects: loss of kinetic energy during the intake stroke, the effect of piston motion during the compression and the expansion stroke, modifications to correlations for integral length scale, geometric length scale, and production rate of turbulent kinetic energy. An adjustable constant to consider engine design which determines tumble strength was also introduced. The comparison of the simulation results with those of three-dimensional computational fluid dynamics confirmed that the developed model can predict the mean turbulence intensity without case-dependent adjustment of the model constant.


AIAA Journal ◽  
1997 ◽  
Vol 35 ◽  
pp. 749-750
Author(s):  
David Sumner ◽  
Ewart Brundrett

Author(s):  
Chenqi Zhu

In order to improve the guiding accuracy in intercepting the hypersonic vehicle, this article presents a finite-time guidance law based on the observer and head-pursuit theory. First, based on a two-dimensional model between the interceptor and target, this study applies the fast power reaching law to head-pursuit guidance law so that it can alleviate the chattering phenomenon and ensure the convergence speed. Second, target maneuvers are considered as system disturbances, and the head-pursuit guidance law based on an observer is proposed. Furthermore, this method is extended to a three-dimensional case. Finally, comparative simulation results further verify the superiority of the guidance laws designed in this article.


Author(s):  
Sunita Kruger ◽  
Leon Pretorius

In this paper, the influence of various bench arrangements on the microclimate inside a two-span greenhouse is numerically investigated using three-dimensional Computational Fluid Dynamics (CFD) models. Longitudinal and peninsular arrangements are investigated for both leeward and windward opened roof ventilators. The velocity and temperature distributions at plant level (1m) were of particular interest. The research in this paper is an extension of two-dimensional work conducted previously [1]. Results indicate that bench layouts inside the greenhouse have a significant effect on the microclimate at plant level. It was found that vent opening direction (leeward or windward) influences the velocity and temperature distributions at plant level noticeably. Results also indicated that in general, the leeward facing greenhouses containing either type of bench arrangement exhibit a lower velocity distribution at plant level compared to windward facing greenhouses. The latter type of greenhouses has regions with relatively high velocities at plant level which could cause some concern. The scalar plots indicate that more stagnant areas of low velocity appear for the leeward facing greenhouses. The windward facing greenhouses also display more heterogeneity at plant level as far as temperature is concerned.


2007 ◽  
Vol 556-557 ◽  
pp. 61-64
Author(s):  
Y. Shishkin ◽  
Rachael L. Myers-Ward ◽  
Stephen E. Saddow ◽  
Alexander Galyukov ◽  
A.N. Vorob'ev ◽  
...  

A fully-comprehensive three-dimensional simulation of a CVD epitaxial growth process has been undertaken and is reported here. Based on a previously developed simulation platform, which connects fluid dynamics and thermal temperature profiling with chemical species kinetics, a complete model of the reaction process in a low pressure hot-wall CVD reactor has been developed. Close agreement between the growth rate observed experimentally and simulated theoretically has been achieved. Such an approach should provide the researcher with sufficient insight into the expected growth rate in the reactor as well as any variations in growth across the hot zone.


Author(s):  
Muhammad Usman Sheikh ◽  
Kalle Ruttik ◽  
Riku Jäntti ◽  
Jyri Hämäläinen

AbstractThe aim of this work is to study the impact of small receiver displacement on a signal propagation in a typical conference room environment at a millimeter wave frequency of 60 GHz. While channel measurements provide insights on the propagation phenomena, their use for the wireless system performance evaluation is challenging. Whereas, carefully executed three-dimensional ray tracing (RT) simulations represent a more flexible option. Nevertheless, a careful validation of simulation methodology is needed. The first target of this article is to highlight the benefits of an in-house built three-dimensional RT tool at 60 GHz and shows the effectiveness of simulations in predicting different characteristics of the channel. To validate the simulation results against the measurements, two different transmitter (Tx) positions and antenna types along with ten receiver (Rx) positions are considered in a typical conference room. In first system configuration, an omnidirectional antenna is placed in the middle of the table, while in the second system configuration a directed horn antenna is located in the corner of the meeting room. After validating the simulation results with the measurement data, in the second part of this work, the impact of a small change, i.e., 20 cm in the receiver position, is studied. To characterize the impact, we apply as performance indicators the received power level, root mean square delay spread (RMS-DS) and RMS angular spread (RMS-AS) in azimuth plane. The channel characteristics are considered with respect to the direct orientation (DO), i.e., the Rx antenna is directed toward the strongest incoming path. Different antenna configurations at the Tx and Rx side are applied to highlight the role of antenna properties on the considered channel characteristics. Especially, in the second system configuration the impact of different antenna half power beamwidth on different considered channel characteristics is highlighted through acquired simulation results. The validation of results shows the RMS error of only 2–3 dB between the measured and simulated received power levels for different Tx configurations in the direction of DO. Results indicate that only a small change of the Rx position may result a large difference in the received power level even in the presence of line-of-sight between the Tx and Rx. It is found that the STD of received power level across the room increases with the decrease in HPBW of the antenna. As can be expected, directed antennas offer lower value of RMS-DS and RMS-AS compared with isotropic antenna.


2014 ◽  
Vol 1042 ◽  
pp. 188-193 ◽  
Author(s):  
Xing Jun Hu ◽  
Jing Chang

In order to analyze the impact of engine cabin parts on aerodynamic characteristics, the related parts are divided into three categories except the engine cooling components: front thin plates (average thickness of 2mm), bottom-suspension and interior panels. The aerodynamic drag coefficient (Cd) were obtained upon the combination schemes consisting of the three types of parts by numerical simulation. Results show that Cd by simulation is closer to the test value gained by the wind tunnel experiment when front thin plates were simplified to the two-dimensional interface with zero thickness. The error is only 5.23%. Meanwhile this scheme reduces grid numbers, thus decreasing the calculating time. As the front thin plates can guide the flow, there is no difference on the Cd values gained from the model with or without bottom-suspension or interior panels when the engine cabin contains the front thin plates; while only both bottom-suspension and interior panels are removed, the Cd value can be reduced when the cabin doesn’t contain the front thin plates.


Sign in / Sign up

Export Citation Format

Share Document