Finite Element Analysis of Sloshing in Horizontal-Cylindrical Industrial Vessels Under Earthquake Loading

Author(s):  
M. A. Platyrrachos ◽  
S. A. Karamanos

The present paper presents a finite-element formulation for earthquake-induced sloshing in horizontal-cylindrical industrial vessels. Assuming small-amplitude free-surface elevation, a linearized sloshing problem is obtained, which provides very good results in comparison with other analytical or numerical solutions, and available experimental data. The paper is aimed at calculating sloshing frequencies, as well as sloshing transient response under horizontal seismic excitation. Based on an “impulsive-convective” decomposition of the container-fluid motion, an efficient methodology is proposed for the calculation of the total seismic force, through the corresponding sloshing masses. The results from the present finite element analysis offers an efficient tool for predicting the total seismic force in horizontal cylinders and extends the current design practice for vertical cylindrical tanks stated in existing seismic design specifications.

1991 ◽  
Vol 113 (3) ◽  
pp. 417-420 ◽  
Author(s):  
S. H. Nguyen

Steady-state compressible isothermal lubrication problems are analyzed by the p-version finite element formulation in conjunction with the Newton-Raphson iteration procedure. Test examples confirm that this is an effective formulation for solving finite width bearing problems, and that, even for high bearing number (Λx > 1000) and coarse mesh situations, numerical solutions are accurate and converge rapidly.


2018 ◽  
Vol 7 (4.13) ◽  
pp. 214-220
Author(s):  
Mohd Nasri Ishak ◽  
Abd Rahim Abu Talib ◽  
Mohammad Yazdi Harmin

Current design of safety syringes requires two handed operation and additional processes which is not similar to the normal syringes. Due to this concern, a new design of safety syringe is introduced in order to produce a safety syringe which allows a single-handed operation and similar to the operation of a normal syringes. This paper presents the material selection process and design analysis of a newly devel-oped multi-purpose disposable safety syringe. Based on the design analysis, the force which needed to dismantle the nozzle is found to be 20 N and this value is practical for the end users. The finite element analysis had also shown that the design concept is safe and has safety feature for the user to use. In addition, copolymer is proven as the best material selection for safety syringe production.


2014 ◽  
Vol 51 (2) ◽  
pp. 196-207 ◽  
Author(s):  
Tamer M. Elshimi ◽  
Richard W.I. Brachman ◽  
Ian D. Moore

Long-span metal culverts have been used for almost 50 years as an economical alternative to short-span bridges. Current design methods are based on two-dimensional finite element analysis using beam theory to represent the structure, or three-dimensional analysis employing orthotropic shell theory. However, neither analysis has been used to investigate the most critical position for trucks at the surface of long-span metal culverts. This paper shows results of three-dimensional finite element analysis, employing orthotropic shell theory and explicitly modeling the geometry of corrugated plates for a specific box culvert tested using a fully loaded dump truck. The analysis was then extended to study the effect of truck position on the response of long-span box and arch culverts. The finite element models, employing orthotropic shell theory and explicitly modeling the geometry of corrugated plates, successfully produced the behaviour of the culvert under truck loading for different truck positions. Culvert deformations were calculated within 7%–13% of the measured values at different locations. The bending moment at the crown was within 4%–17% of the values calculated using the measured strains. If three-dimensional finite element analysis is used to design these culverts, two design trucks should be considered (current design considers a single design truck). The highest moment or thrust is obtained when the truck tandem axles are located above the crown of the culvert.


2012 ◽  
Vol 525-526 ◽  
pp. 93-96
Author(s):  
Xue Cheng Ping ◽  
Lin Leng ◽  
Si Hai Wu

A super wedge tip element for application to a bi-material wedge is develop utilizing the thermo-mechanical stress and displacement field solutions in which the singular parts are numerical solutions. Singular stresses near apex of an arbitrary bi-material wedge under mechanical and thermal loading can be obtained from the coupling between the super wedge tip element and conventional finite elements. The validity of this novel finite element method is established through existing asymptotic solutions and conventional detailed finite element analysis.


2012 ◽  
Vol 09 (01) ◽  
pp. 1240008 ◽  
Author(s):  
FENGZHI LI ◽  
QIANG TU

The scaled boundary finite element method (SBFEM) is used to solve the seepage problems with multi-material regions. Two models of dam base with waterproof screen and dam body with the regions of two materials are established. The numerical solutions are obtained and then compared with the analytical results or numerical solutions in the references. The conclusion shows that the SBFEM has more satisfactory accuracy and less data preparation amount.


Author(s):  
Josh Danczyk ◽  
Krishnan Suresh

In finite element analysis (FEA), tasks such as mesh optimization and mesh morphing can lead to overlapping elements, i.e., to a tangled mesh. Such meshes are considered ‘unacceptable’ today, and are therefore untangled using specialized procedures. Here it is shown that FEA can be easily extended to handle tangled meshes. Specifically, by defining the nodal functional space as an oriented linear combination of the element shape functions, it is shown that the classic Galerkin formulation leads to a valid finite element formulation over such meshes. Patch tests and numerical examples illustrate the correctness of the proposed methodology.


1991 ◽  
Vol 19 (1) ◽  
pp. 23-36 ◽  
Author(s):  
K. Ishihara

Abstract A three-dimensional membrane element was developed for the finite element analysis of tires. In general, the three-dimensional finite element analysis of tires uses a lot of computing time because of the complex nature of the problem. Major sources of complexity are, for example, nonlinearities in kinematics, material properties, boundary conditions, and the multilayer structure which is inherent to the tire. One of the ways to overcome this situation can be in the modeling strategy. This paper describes an approach where the cord-rubber composite components of the tire are modeled by membrane elements. The number of nodes required in the tire model using this strategy is considerably reduced, without any loss of accuracy, compared with models in which only ordinary solid elements are used. The nonlinear finite element formulation, numerical examples, and a comparison of the results with those obtained from models using solid elements and experimental values are given in the paper.


Sign in / Sign up

Export Citation Format

Share Document