scholarly journals Wear Performance of Metal Materials Fabricated by Powder Bed Fusion: A Literature Review

Metals ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 304 ◽  
Author(s):  
Hongling Qin ◽  
Runzhou Xu ◽  
Pixiang Lan ◽  
Jian Wang ◽  
Wenlong Lu

Powder Bed Fusion (PBF) is an additive manufacturing technology used to produce metal-based materials. PBF materials have a unique microstructure as a result from repeated and sharp heating/cooling cycles. Many researches have been carried out on relations between processing parameters of the PBF technology, obtained microstructures and mechanical properties. However, there are few studies on the tribological properties of PBF materials at various contact conditions. This article describes previous and recent studies related to the friction performance. This is a critical aspect if PBF materials are applied to friction pair components. This paper discusses wear rates and wear mechanisms of PBF materials under dry friction, boundary lubrication and micro-motion conditions. PBF materials have higher hardness due to fine grains. PBF materials have a higher wear resistance than traditional materials due to their solid solution strengthening. In addition, hard particles on the surface of PBF components can effectively reduce wear. The reasonable combination of process parameters can effectively improve the density of parts and thus further improve the wear resistance. This review paper summarized the wear behavior of PBF materials, the wear mechanism of metal materials from dry friction to different lubrication conditions, and the wear behavior under fretting wear. This will help to control the processing parameters and material powder composition of parts, so as to achieve the required material properties of parts and further improve the wear performance.

2019 ◽  
Vol 141 (10) ◽  
Author(s):  
Mengjiao Wang ◽  
Yunxia Wang ◽  
Jianzhang Wang ◽  
Na Fan ◽  
Fengyuan Yan

Super duplex stainless steel (SDSS) has excellent mechanical properties and corrosion resistance. However, currently, there are few researches conducted on its fretting wear performance. This paper studies the influence of different heat treatment temperatures and medium environment on the fretting wear performance of SAF 2507 SDSS. Results show that the combined effect of the sigma phase and seawater lubrication can significantly improve the wear resistance of SAF 2507 SDSS. After treated with different heat treatment temperatures, different contents of sigma phases are precipitated out of SAF 2507 SDSS, which improves the wear resistance of the material to different degrees. In addition, the fretting wear performance of SAF 2507 SDSS also relates to the lubrication medium. In air, the friction and wear performance of SAF 2507 SDSS is poor, while in seawater, solution and corrosion products that acted as a lubricant dramatically improve the wear resistance of the material. Under the combined action of heat treatment and seawater lubrication medium, the friction coefficient and wear reduce by 70% and 91%, respectively.


Materials ◽  
2020 ◽  
Vol 13 (21) ◽  
pp. 4879
Author(s):  
Mireia Vilanova ◽  
Rubén Escribano-García ◽  
Teresa Guraya ◽  
Maria San Sebastian

A method to find the optimum process parameters for manufacturing nickel-based superalloy Inconel 738LC by laser powder bed fusion (LPBF) technology is presented. This material is known to form cracks during its processing by LPBF technology; thus, process parameters have to be optimized to get a high quality product. In this work, the objective of the optimization was to obtain samples with fewer pores and cracks. A design of experiments (DoE) technique was implemented to define the reduced set of samples. Each sample was manufactured by LPBF with a specific combination of laser power, laser scan speed, hatch distance and scan strategy parameters. Using the porosity and crack density results obtained from the DoE samples, quadratic models were fitted, which allowed identifying the optimal working point by applying the response surface method (RSM). Finally, five samples with the predicted optimal processing parameters were fabricated. The examination of these samples showed that it was possible to manufacture IN738LC samples free of cracks and with a porosity percentage below 0.1%. Therefore, it was demonstrated that RSM is suitable for obtaining optimum process parameters for IN738LC alloy manufacturing by LPBF technology.


Metals ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1273 ◽  
Author(s):  
Barry Mooney ◽  
Kyriakos Kourousis

Maraging steel is an engineering alloy which has been widely employed in metal additive manufacturing. This paper examines manufacturing and post-processing factors affecting the properties of maraging steel fabricated via laser powder bed fusion (L-PBF). It covers the review of published research findings on how powder quality feedstock, processing parameters, laser scan strategy, build orientation and heat treatment can influence the microstructure, density and porosity, defects and residual stresses developed on L-PBF maraging steel, with a focus on the maraging steel 300 alloy. This review offers an evaluation of the resulting mechanical properties of the as-built and heat-treated maraging steel 300, with a focus on anisotropic characteristics. Possible directions for further research are also identified.


Materials ◽  
2018 ◽  
Vol 11 (12) ◽  
pp. 2356 ◽  
Author(s):  
Elena Bassoli ◽  
Antonella Sola ◽  
Mattia Celesti ◽  
Sandro Calcagnile ◽  
Carlo Cavallini

In spite of the fast growth of laser-based powder bed fusion (L-PBF) processes as a part of everyday industrial practice, achieving consistent production is hampered by the scarce repeatability of performance that is often encountered across different additive manufacturing (AM) machines. In addition, the development of novel feedstock materials, which is fundamental to the future growth of AM, is limited by the absence of established methodologies for their successful exploitation. This paper proposes a structured procedure with a complete test plan, which defines step-by-step the standardized actions that should be taken to optimize the processing parameters and scanning strategy in L-PBF of new alloy grades. The method is holistic, since it considers all the laser/material interactions in different local geometries of the build, and suggests, for each possible interaction, a specific geometry for test specimens, standard energy parameters to be analyzed through a design of experiment, and measurable key performance indicators. The proposed procedure therefore represents a sound and robust aid to the development of novel alloy grades for L-PBF and to the definition of the most appropriate processing conditions for them, independent of the specific AM machine applied.


Materials ◽  
2022 ◽  
Vol 15 (1) ◽  
pp. 385
Author(s):  
Ruben Vande Ryse ◽  
Mariya Edeleva ◽  
Ortwijn Van Stichel ◽  
Dagmar R. D’hooge ◽  
Frederik Pille ◽  
...  

Additive manufacturing (AM) of polymeric materials offers many benefits, from rapid prototyping to the production of end-use material parts. Powder bed fusion (PBF), more specifically selective laser sintering (SLS), is a very promising AM technology. However, up until now, most SLS research has been directed toward polyamide powders. In addition, only basic models have been put forward that are less directed to the identification of the most suited operating conditions in a sustainable production context. In the present combined experimental and theoretical study, the impacts of several SLS processing parameters (e.g., laser power, part bed temperature, and layer thickness) are investigated for a thermoplastic elastomer polyester by means of colorimetric, morphological, physical, and mechanical analysis of the printed parts. It is shown that an optimal SLS processing window exists in which the printed polyester material presents a higher density and better mechanical properties as well as a low yellowing index, specifically upon using a laser power of 17–20 W. It is further highlighted that the current models are not accurate enough at predicting the laser power at which thermal degradation occurs. Updated and more fundamental equations are therefore proposed, and guidelines are formulated to better assess the laser power for degradation and the maximal temperature achieved during sintering. This is performed by employing the reflection and absorbance of the laser light and taking into account the particle size distribution of the powder material.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Xiaocui Xin ◽  
Yunxia Wang ◽  
Zhaojie Meng ◽  
Fengyuan Yan

Purpose The purpose of this paper is to investigate the fretting wear performance of ultra-high-molecular-weight-polyethene (UHMWPE) with addition of GO and SiO2. Design/methodology/approach In this study, GO were synthesized and SiO2 nanoparticles were grafted onto GO. The effect of nanofiller on fretting wear performance of UHMWPE was investigated. Findings The results indicated that GO was successfully synthesized and SiO2 nanoparticles successfully grafted onto GO. Incorporation of GS was beneficial for the reduction in friction and the improvement in wear resistance of UHMWPE. GO was beneficial for reducing friction coefficient, while SiO2 was good for improving wear resistance. There existed a tribological synergistic effect between GO nanosheet and SiO2 nanoparticles. Research limitations/implications The hybrids of GS were promising nanofiller for improving the fretting wear performance of UHMWPE. Originality/value The main originality of the research is to reveal the effect of GO and SiO2 nanoparticles on fretting behavior of UHMWPE. The result indicated hybrids of GS were promising nanofiller for improving the fretting wear performance of UHMWPE.


Sign in / Sign up

Export Citation Format

Share Document