Non-Linear Time Domain Method to Predict Tube-to-Tube Support Plate Fretting Wear in Steam Generators

Author(s):  
J. A. Burgess ◽  
M. K. Au-Yang ◽  
C. K. Chandler

Fretting-wear of nuclear heat exchanger equipment is addressed at the design stage to demonstrate that the tube and tube support plate components will meet their design life. AREVA has developed a method to predict the progression of fretting-wear using a combination of the predicted work-rates determined from the non-linear interaction of the tube and tube support plates caused by turbulence-induced vibration and the forces associated with fluid-elastic instability. The wear rate is then computed based upon the work-rate and the experimentally determined wear coefficient of the material pair. This solution is performed with a time domain analysis using a time history modal superposition method. Time history forcing functions are first obtained by the inverse Fourier transform of the power spectral density function used in classical turbulence-induced vibration analysis. The fluid-structure coupling force, which is dependent on the cross-flow velocity, is linearly superimposed onto the turbulence forcing function. The tube responses are then computed by direct integration in the time domain. The results of the analysis show that the highest work-rates occur at the design tube-to-tube support plate clearance configuration and become progressively lower over the life of the heat exchanger. The work-rates and the turbulence-induced vibration response of the tube are computed at several mid-life time steps based upon the increased tube-to-tube support plate clearances resulting from the tube wear.

Author(s):  
Jan V. Ulveseter ◽  
Svein Sævik ◽  
Carl M. Larsen

A promising time domain model for calculation of cross-flow vortex induced vibrations (VIV) is under development at the Norwegian University of Science and Technology. Time domain, as oppose to frequency domain, makes it possible to include non-linearities in the structural model. Pipelines that rest on an irregular seabed will experience free spans. In these areas VIV is a concern with respect to the fatigue life. In this paper, a time domain model for calculation of VIV on free spanning pipelines is proposed. The model has non-linear interaction properties consisting of discrete soil dampers and soil springs turning on or off depending on the pipeline response. The non-linear model is compared to two linear models with linear stiffness and damping properties. One linear model is based on the promising time domain VIV model, while the other one is based on RIFLEX and VIVANA, which calculates VIV in frequency domain. Through four case studies the effect of seabed geometry, current velocity and varying soil damping and soil stiffness is investigated for a specific pipeline. The results show that there is good agreement between the results produced by VIVANA and the linear model. The non-linear model predicts smaller stresses at the pipe shoulders, which is positive for the life time estimations. Soil damping does not influence the response significantly.


1979 ◽  
Vol 101 (4) ◽  
pp. 630-633 ◽  
Author(s):  
R. D. Blevins

Conceptual and empirical models are developed for the fretting wear of heat exchanger tubes. The models based on the experimental data of Part I of this series and on the concept that fretting wear is the result of relative motion between the tube and the support plate.


1979 ◽  
Vol 101 (4) ◽  
pp. 625-629 ◽  
Author(s):  
R. D. Blevins

The results of a series of measurements made on the fretting wear of heat exchanger tubes and support plates at room temperature in a nitrogen/air atmosphere are presented. The fretting wear is shown to be a function of the amplitude and frequency of tube vibration as well as the gap between the tube and the support plate and the mean load supported by the tube. An empirical model is developed in Part II for predicting the fretting wear.


Author(s):  
Marwan Hassan

Fluidelastic instability is regarded as the most complex and destructive flow excitation mechanism in heat exchanger tube arrays subjected to cross fluid flow. Several attempts have been made for modelling fluidelastic instability in tube arrays in order to predict the stability threshold. However, fretting wear prediction requires a nonlinear computation of the tube dynamics in which proper modelling of the fluid forcing function is essential. In this paper, a time domain simulation of fluidelastic instability is presented for a single flexible tube in an otherwise rigid array subjected to cross fluid flow. The model is based on the unsteady flow theory proposed by Lever and Weaver [1] and Yetisir and Weaver [2]. The developed model has been implemented in INDAP (Incremental Nonlinear Dynamic Analysis Program), an in-house finite element code. Numerical investigations were performed for two linear tube-array geometries and compared with published experimental data. A reasonable agreement between the numerical simulation and the experimental results was obtained. The fluidelastic force model was also coupled with a tube/support interaction model. The developed numerical model was utilized to study a loosely-supported cantilever tube subjected to air flow. Tube-to-support clearance, random excitation level, and flow velocity were then varied. The results indicated that the loose support has a stabilizing effect on the tube response. Both rms impact force and normal work rate increased as a result of increasing the flow velocity or the support radial clearance. Contact ratio exhibited a sharp increase at a flow velocity higher than the instability threshold of the first unsupported mode. In addition, an interesting behaviour has been observed, namely the change of tube’s equilibrium position due to fluid forces. This causes a single-sided impact. At a higher turbulence level, double-sided impact conditions were dominant. The influence of these dynamic regimes on the tube/support parameters was also addressed.


Author(s):  
Alberto F. Marti´n Ghiselli ◽  
Rau´l M. Kulichevsky ◽  
Mauricio A. Sacchi ◽  
Alberto J. Pastorini ◽  
Ce´sar G. Belinco

A flow-induced vibration problem evaluation of a shell and tube cooling water heat exchanger equipment installed in a power plant is presented in this paper. The problem produced loss of thickness in many tubes of the bundle, by impact or fretting wear, and the need to plug these tubes to avoid leakage. These vibrations could had been produced by changes in the equipment operational conditions or by a wrong evaluation during the design stage. An analytical and experimental evaluation was made to predict tubes dynamical response and to identify the excitation mechanisms. The original design modification adopted to solve the problem is presented and evaluated.


1987 ◽  
Vol 109 (3) ◽  
pp. 265-274 ◽  
Author(s):  
J. H. Cha ◽  
M. W. Wambsganss ◽  
J. A. Jendrzejczyk

The objective of this study is to provide qualitative impact/fretting wear information for heat exchanger tubes through the performance of a series of tests involving the pertinent parameters: force between the tube and its support; tube to support plate hole clearance; tube support plate thickness; preload; and tube vibration frequency. The characteristics of impact/fretting wear relative to material combinations and fluid environment were also investigated. The test apparatus consists of a cantilevered tube with a simulated tube support plate at the “free end.” Tube vibration is induced by an electromagnetic exciter to simulate the flow-induced tube motion occurring in a real heat exchanger at the tube/tube support plate interface. Tests are conducted in air, water, and oil, all at room temperature. Removable wear rings are attached to the tube free end and simulated support fixture. Wear ring materials include carbon steel, 304 stainless steel, Inconel 600 and brass. Wear is measured by a weight loss technique and wear rates are calculated and reported as functions of the various pertinent parameters. Based on the test results, general conclusions are drawn.


2004 ◽  
Vol 61 (7-12) ◽  
pp. 1055-1071
Author(s):  
N. N. Gerasimova ◽  
V. G. Sinitsin ◽  
Yu. M. Yampolski

2014 ◽  
Vol 13 (1) ◽  
Author(s):  
Nidiasari Jati Sunaryati Eem Ikhsan

Struktur rangka baja pemikul momen merupakan jenis struktur baja tahan gempa yang populer digunakan. Daktilitas struktur yang tinggi merupakan salah satu keunggulan struktur ini, sehingga mampu menahan deformasi inelastik yang besar. Dalam desain, penggunaan metode desain elastis berupa evaluasi non-linear static (Pushover analysis) maupun evaluasi non-linear analisis (Time History Analysis) masih digunakan sebagai dasar perencanaan meskipun perilaku struktur sebenarnya saat kondisi inelastik tidak dapat digambarkan dengan baik. Metode Performance-Based Plastic Design (PBPD) berkembang untuk melihat perilaku struktur sebenarnya dengan cara menetapkan terlebih dahulu simpangan dan mekanisme leleh struktur sehingga gaya geser dasar yang digunakan adalah sama dengan usaha yang dibutuhkan untuk mendorong struktur hingga tercapai simpangan yang telah direncanakan. Studi dilakukan terhadap struktur baja 5 lantai yang diberi beban gempa berdasarkan SNI 1726, 2012 dan berdasarkan metode PBPD. Hasil analisa menunjukkan bahwa struktur yang diberi gaya gempa berdasarkan metode PBPD mencapai simpangan maksimum sesuai simpangan rencana dan kinerja struktur yang dihasilkan lebih baik .


Sign in / Sign up

Export Citation Format

Share Document