scholarly journals Special Phased Array Applications for Pipeline Girth Weld Inspections

Author(s):  
Michael Moles ◽  
Simon Labbe´

Ultrasonic phased arrays present major improvements over conventional multiprobe ultrasonics for inspecting pipeline girth welds, both for onshore and for offshore use. Probe pans are lighter and smaller, permitting less cutback; scans are quicker due to the smaller probe pan; phased arrays are considerably more flexible for changes in pipe dimensions or weld profiles, and for different scan patterns. More important, some of the potential advantages of phased arrays are now becoming commercially available. These include: • Compensating for variations in seamless pipe wall thickness. • Wedge temperature compensation. • Improved focusing for thick and thin wall inspections. • Premium inspections for risers, tendons and other components. • Small diameter pipes. • Multiple displays. • Clad pipe. The paper describes the latest phased array UT results for special applications.

Author(s):  
Michael Moles ◽  
Noe¨l Dube´ ◽  
Simon Labbe´

Ultrasonic phased arrays present major improvements over conventional multiprobe ultrasonics for inspecting pipeline girth welds, both for onshore and for offshore use. Probe pans are lighter and smaller, permitting less cutback; scans are quicker due to the smaller probe pan; phased arrays are considerably more flexible for changes in pipe dimensions or weld profiles, and for different scan patterns. More important, some of the potential advantages of phased arrays are now becoming commercially available. These include: compensating for variations in seamless pipe wall thickness; wedge temperature compensation; premium inspections for risers, tendons and other components; small diameter pipes; multiple displays; clad pipe; portable phased arrays for tie-ins and repairs; improved sizing approaches. The paper will describe the latest phased array UT results for special applications.


Author(s):  
Michael Moles ◽  
Noe¨l Dube´ ◽  
Ed Ginzel

Mechanized ultrasonics is rapidly replacing radiography worldwide for gas pipeline girth weld inspections. Compared with radiography, mechanized ultrasonics is more reliable, faster, has better detectability for critical Lack of Fusion defects, and poses no safety hazard. Phased arrays present major improvements over conventional multiprobe ultrasonics, both for onshore and for offshore use. Probe pans are lighter and smaller, permitting less cutback; scans are quicker due to the smaller probe pan; phased arrays are considerably more flexible for changes in pipe dimensions or weld profiles, and for different scan patterns; phased arrays have great potential for the future, such as compensating for variations in pipe wall thickness or temperature. This paper describes the evaluation of the PipeWIZARD ultrasonic phased array system for girth weld inspections, using standard ASTM E-1961 Mechanized Ultrasonics set-ups. Some typical results will be shown. The paper will describe the latest phased array UT results, plus developments like automated set-ups and improved imaging using an increased number of zones. A brief comparison of E-1961 and the recent API 1104 19th Edition codes will be made, plus a summary of approvals and track record to date.


Author(s):  
Oleksandr Sobolenko ◽  
Petro Drozhzha ◽  
Nataliia Dorosh ◽  
Lina Petrechuk

The technological process of seamless pipes production, has many stages. Each stage significantly affects the accuracy of the geometric dimensions of the pipes. One of the main parameters characterizing the accuracy of the pipes is their transverse difference namely the size and the nature of the distribution of the pipe wall thickness in the cross section. Different pipe wall thickness makes it difficult to get quality pipe screw-thread.The use of statistical data processing methods makes it possible to predict the seamless pipe difference indicator. A statistical analysis of the wall thickness indicator of the end sections showed a high ratio of wall thickness symmetry. An effective way to minimize the symmetric difference component is to optimize the deformation modes along the pipe wall.


2020 ◽  
pp. 49-52
Author(s):  
R.A. Okulov ◽  
N.V. Semenova

The change in the intensity of the deformation of the pipe wall during profiling by drawing was studied. The dependence of the strain intensity on the wall thickness of the workpiece is obtained to predict the processing results in the production of shaped pipes with desired properties. Keywords drawing, profile pipe, wall thickness, strain rate. [email protected]


2021 ◽  
Author(s):  
Niels Pörtzgen ◽  
Ola Bachke Solem

Abstract During the construction of pipelines for the transportation of oil and gas, the inspection of girth welds is a critical step to ensure the integrity and thereby the safety and durability of the pipeline. In this paper we present an advanced technology ‘IWEX’ for the non-destructive testing of welds based on 2D and 3D ultrasonic imaging. This technology allows for safe, fast, and accurate inspection whereby the results are presented comprehensively. This will be illustrated with results from a recent project. The IWEX technology is based on an ultrasonic inspection concept, whereby ‘fingerprints’ of ultrasonic signals are recorded, also referred to as ‘full matrix capture’ (FMC) data. Then, an image area is defined, consisting out of pixels over an area large enough to cover the inspection volume. With the FMC data, image amplitudes are calculated for each pixel so that the shape of geometry (back wall, front wall, cap, and root) and possible indications are revealed. As opposed to traditional ultrasonic testing strategies, the detection and sizing of indications is therefore less dependent on its orientation. The project concerned the inspection of J and V welds from a 5.56″ diameter carbon steel pipe with an 8.4mm wall thickness. The wall thickness is relatively thin compared to common inspection scopes. Therefore, the inspection set-up was adapted, and procedural changes were proposed. Consequently, additional validation efforts were required to demonstrate compliance with the required inspection standard; DNVGL-ST-F101: 2017. As part of this, welds were scanned with seeded indications and the reported locations were marked for macro slicing under witnessing of an independent representative from DNVGL. The resulting images from the indications in the welds showed great detail with respect to the position, orientation and height of the indications. A quantitative comparison with the results from the macro slices was performed, including a statistical analysis of the height sizing and depth positioning accuracies. From the analysis, it could be observed that the expected improvements with respect to the resolution and sizing accuracy were indeed achieved. Thereby, the procedure has proven to be adequate for the inspection of carbon steel girth welds within the thin wall thickness range (~6mm to ~15mm). The IWEX technology is a member of the upcoming inspection strategy based on imaging of ultrasonic FMC data. This strategy can be considered as the next step in the evolution of inspection strategies after phased array inspection. The IWEX technology has been witnessed and qualified by independent 3rd parties like DNVGL, this makes the IWEX technology unique in its kind and it opens opportunities for further acceptance in the industry and other inspection applications.


2021 ◽  
pp. 143-147
Author(s):  
Charles Becht

While the exercise of pressurizing a piping system and checking for leaks is sometimes called pressure testing, the Code refers to it as leak testing. The main purpose of the test is to demonstrate that the piping can confine fluid without leaking. When the piping is leak tested at pressures above the design pressure, the test also demonstrates that the piping is strong enough to withstand the pressure. For large bore piping where the pipe wall thickness is close to the minimum required by the Code, being strong enough to withstand the pressure is an important test. For small bore piping that typically has a significant amount of extra pipe wall thickness, being strong enough is not in question. Making sure that the piping is leak free is important for all piping systems.


Author(s):  
Philippe Gilles ◽  
Alexandre Brosse ◽  
Moi¨se Pignol

This paper presents ductile initiation calculations and growth simulations of a surface crack up to pipe wall breakthrough. For validation purpose, one of the two BIMET configurations is selected. The EC program BIMET has been carried out to analyze the ductile tearing behavior of DMWs through experiments and computational analyses. In the mock-up, the initial defect is an external circumferential defect located close to the weld-ferritic interface, with a depth of one third of the wall thickness. During the test, the crack extended up to two third of the pipe wall thickness. The aim of the study is to simulate the crack initiation and growth, to compare the results with the experimental records and to continue the ductile crack growth up to pipe wall break-through.


Sign in / Sign up

Export Citation Format

Share Document