Effects of Strain Holding and Continuously Changing Strain Rate on Fatigue Life Reduction of Structural Materials in Simulated LWR Water

Author(s):  
Makoto Higuchi ◽  
Katsumi Sakaguchi ◽  
Yuichiro Nomura

The fatigue life reduces remarkably with reduction in strain rate in simulated light water reactor (LWR) water but the effects of strain wave form on this reduction are still not clear. This paper provides fatigue life data obtained from stepwise strain rate change tests, sine wave tests and strain holding tests. The effects of varying strain rate on fatigue life reduction can be estimated very well by the modified rate approach (MRA) method in the case of the step wise strain rate changing as shown in authors’ previous papers [1, 2, 3, 4, 5]. In the case of sine wave, however, the fatigue life reduction is much less compared to that predicted by the MRA method. The mechanism of such difference is not clear and the quantitative assessment of the fatigue life reduction caused by irregular strain wave form in actual transient seems impossible. The current MRA method gives always conservative assessment for sine wave straining and thus it is judged that this method need not be revised any more. The fatigue life reduction caused by strain holding at the peak of straining cycle in simulated BWR water had been reported in the previous paper [6]. In actual thermal transients, however, strain is not usually held at the peak of straining cycle but at the point somewhat reduced from the peak after the stabilization of temperature. In considering this phenomenon, additional fatigue tests in which the strain was held at the point somewhat reduced from the peak were carried out. In such conditions, the fatigue life reduction caused by strain holding disappeared. The similar fatigue tests with peak strain holding were also carried out in simulated PWR water and no fatigue life reduction can be observed. Considering the effects of strain holding on fatigue, the model for evaluating fatigue life reduction in LWR water was revised.

Author(s):  
Akihiko Hirano ◽  
Satoko Mizuta

Fatigue evaluation methods have been proposed based on environmental fatigue test results regarding parameters selected for simulating Boiling Water Reactor (BWR) and Pressurized Water Reactor (PWR) conditions. The effects of strain wave form have been discussed by comparing experimental fatigue life with predicted fatigue life evaluated by modified rate approach (MRA) method. The applicability of the MRA method has been verified extensively by the environmental fatigue tests with strain rate changing conditions consisting of combined constant strain rates. However, different results have been obtained for a sine strain wave in simulated BWR and PWR conditions. More study for evaluating the applicability of MRA method was required by evaluating with continuous strain rate conditions such as a sine wave. For the purpose of verification, two approaches were applied. One is performing the environmental fatigue tests with the sine strain wave in simulated BWR condition. The other is to evaluate the low cycle thermal fatigue test performed in simulated BWR condition because the wave form of this test contains continuous strain rate changing condition. MRA method was indicated to be applicable to predict fatigue lives under these kinds of continuous strain rate changing conditions. All of the studies including this study verifying the applicability of the MRA method were performed with small specimens having the well polished surfaces in the gage length. These results indicate that the evaluation by the MRA method includes the synergistic effect between the water environment and the transient. However, the synergistic effects with the surface roughness and the component size are not known. Design margin derived by the multiplication of the sub-factors of environment, surface roughness and component size may be conservative. The evaluation of the conservatism is considered to be beneficial.


Author(s):  
Koji Dozaki ◽  
Hiromasa Chitose ◽  
Hiroshi Ogawa ◽  
Hideo Machida

The dynamic aspects of loading conditions for reactor internals, piping and the like, are thought to play important roles in the initiation of failures due, for example, to stress corrosion cracking (SCC) and fatigue. Some reports show that a strain rate on the order of 10−7 s−1 most affects susceptibility to SCC in the BWR reactor water environment. Environmental fatigue, which exhibits a shorter fatigue life in reactor water than that in air, is considered to have a remarkable correlation with strain rate and its affect on fatigue life. Despite its significant affect on SCC and fatigue, the actual strain rate of components is not known and practical evaluation methods have not been developed; consequently, such failure modes as SCC and fatigue are not evaluated in design. For this paper, strain rates induced by dynamic loading during such operations as plant start-up were calculated at typical points, such as reactor internals, piping and so on. The finite element method was applied to calculate the strain history of each point, and the strain rate was evaluated. The strain rate evaluation results clearly demonstrated that thermal transients provide greater peak strain rate values than pressure transients. Strain rates on the order of 10−7 s−1 were obtained for most points of major components during such thermal transients as plant start-ups. The major factors determining the strain rate magnitude were discussed, based on the calculation results. It was shown that the rate of temperature rise was the most important parameter, because it exhibited much larger sensitivity than the other parameters on the strain rate and could be controlled by plant operation procedures. In addition, a simple strain rate evaluation method based on Green’s function was developed for a specific point with a given design condition.


Author(s):  
Yuichiro Nomura ◽  
Seiji Asada ◽  
Takao Nakamura ◽  
Masakazu Tanaka

The strain rates in actual transients of operating plants are not constant and changing momentarily. A large number of fatigue tests under stepwise strain rate changing conditions were performed to develop a method for evaluating fatigue life under varying strain rate conditions. Based on these test results, a strain base integral model known as the named the modified rate approach method was developed and verified. However it was reported recently that in the case of sine wave fatigue tests in BWR environment, the fatigue life was two to six times longer than the fatigue life predicted by the modified rate approach method. For this paper, in order to confirm whether the same tendency is observed in PWR environment, fatigue tests of sine wave were performed of SS316 in simulated PWR water environment. As the result, the difference of fatigue life by sine wave test reported in BWR environment was not observed between experimental and predicted life in PWR environment and the modified rate approach method was applicable under continuous strain rate changing condition.


1968 ◽  
Vol 3 (4) ◽  
pp. 245-253 ◽  
Author(s):  
P Srinivasan ◽  
I S Rau

The results of a theoretical and experimental invetigation to determine the fatigue life of a cantilever (with tip mass) subjected to repeated shock loading of the half-sine-wave form are presented. From a simple law of fatigue-crack propagation cumulative damage criteria for predicting fatigue life under variable-amplitude loading are developed. The unknown constants in these criteria are determined from conventional constant-amplitude fatigue tests on a repeated-bending testing machine. From the response of the shock-excited structure determined from linear single-degree-of-freedom theory and the cumulative damage criteria developed, relations for predicting fatigue life under repeated shock loading are developed. The theoretical predictions are then compared with the experimental dau obtained by actually conducting the repeated shock test on a specially designed shock testing machine. The agreement between theory and experiment is fairly good for steel, the material for which the test results are reported.


Author(s):  
Katsumi Sakaguchi ◽  
Yuichiro Nomura ◽  
Shigeki Suzuki ◽  
Hiroshi Kanasaki

The fatigue life in elevated temperature water is strongly affected by water chemistry, temperature and strain rate. The effects of these parameters on fatigue life reduction have been investigated experimentally. In transient condition in an actual plant, however, such parameters as temperature and strain rate are not constant. In order to evaluate fatigue damage in actual plant on the basis of experimental results under constant temperature and strain rate condition, the modified rate approach method was developed. As a part of the EFT (Environmental Fatigue Tests) project, the study was conducted in order to evaluate the applicability of the modified rate approach to the case where temperature and strain rate varied simultaneously. It was reported in the previous papers (1,2) that the accuracy of modified rate approach is about factor of 2. Various kinds of transient have to be taken into account of in actual plant fatigue evaluation, and stress cycle of several ranges of amplitude has to be considered in assessing damage from fatigue. Generally, cumulative usage factor is applied in this type of evaluation. In this study, in order to confirm applicability of modified rate approach method together with cumulative usage factor, tests were carried out by combining stress cycle blocks of different strain amplitude levels, in which temperature changes in response to strain change in a simulated PWR environment.


Author(s):  
Makoto Higuchi ◽  
Katsumi Sakaguchi ◽  
Akihiko Hirano ◽  
Yuichiro Nomura

Low cycle fatigue life of carbon and low alloy steels reduces remarkably as functions of strain rate, temperature, dissolved oxygen and sulfur in steel in high temperature water simulating LWR coolant. A model for predicting such fatigue life reduction was first proposed in the early 1980s and since then has been revised several times. The existing model established in 2000 is used for the MITI Guideline [6] and the TENPES Guideline [7] which stipulate procedures for evaluating environmental fatigue damage at LWR plants in Japan. This paper presents the most recent environmental fatigue evaluation model derived based on additional fatigue data provided by the EFT Project over the past five years. This model differs not significantly with previous version but does provide more accurate equations for the susceptibility of fatigue life to sulfur in steel, strain rate, temperature and dissolved oxygen. Test data on environmental fatigue of nickel base alloys are available only to a limited extent and there is yet no model for predicting fatigue life reduction in such an environment. The EFT Project has made available considerable environmental fatigue test data and developed a new model for calculating Fen of nickel base alloys. The contribution of environment to fatigue of nickel base alloy is much less compared to that in austenitic stainless steel.


1988 ◽  
Vol 110 (1) ◽  
pp. 88-90 ◽  
Author(s):  
R. G. Lambert

Fatigue life estimates that use a structural material’s constant amplitude stress life data values and a linear cumulative damage rule are always nonconservative for stress histories containing numerous subcycles and only a few large-amplitude cycles. Conservative fatigue life estimates were previously achieved by others with a plastic work interaction damage rule using the material’s overstrain fatigue life parameter values. Verification fatigue tests were run on laboratory specimens of 1020 steel using four selected variable amplitude stress wave form profiles. This paper extends the application of the plastic work interaction damage rule to narrowband Gaussian random stress situations. The derived stress life mathematical expression is of a power law form. The predicted fatigue life is more accurate than that predicted using a conventional linear damage rule.


Author(s):  
Todd Letcher ◽  
M.-H. Herman Shen ◽  
Onome Scott-Emuakpor ◽  
Tommy George ◽  
Charles Cross

The energy-based lifing method is based on the theory that the cumulative energy in all hysteresis loops of a specimens’ lifetime is equal to the energy in a monotonic tension test. Based on this theory, fatigue life can be calculated by dividing monotonic strain energy by a hysteresis energy model, which is a function of stress amplitude. Recent studies have focused on developing this method for a sine wave loading pattern — a variable strain rate. In order to remove the effects of a variable strain rate throughout the fatigue cycle, a constant strain rate triangle wave loading pattern was tested. The testing was conducted at various frequencies to evaluate the effects of multiple constant strain rates. Hysteresis loops created with sine wave loading and triangle loading were compared. The effects of variable and constant strain rate loading patterns on hysteresis loops throughout a specimens’ fatigue life are examined.


2016 ◽  
Vol 869 ◽  
pp. 503-507 ◽  
Author(s):  
Carlos Eduardo Molento de Moraes ◽  
Carlos Antonio Reis Pereira Baptista ◽  
Marcelo Augusto dos Santos Torres ◽  
Maria Cindra Fonseca ◽  
Antonio Jorge Abdalla

The AISI 4340 steel has been largely employed for structural purposes, which requires resistance levels with yield strength above 1400 MPa and it attains high levels of resistance in dual phase, bainitic or martensitic microstructural conditions. The samples of AISI 4340 steel with different microstructural conditions (martensitic, bainitic and ferritic/perlitic) have been submitted to fatigue tests on push-pull mode. Subsequently, the new specimens underwent a shot peening surface treatment and new fatigue tests. The results have been discussed in comparison to the three microstructural conditions studied and they were related to a microstructural characterization. The results have showed that a shot peening treatment is not always beneficial to fatigue life, since there is a relationship between the compressive stresses developed on the surface and its roughness formed due to the deformations. Under the three microstructural above studied it was noticed a strong fatigue life reduction in the martensitic condition because such microstructure is considered less ductile.


Sign in / Sign up

Export Citation Format

Share Document