The Effect of Throughwall Axial Crack on In-Plane Collapse Moment of Pipe Bend

Author(s):  
J. Chattopadhyay ◽  
W. V. Venkatramana ◽  
B. K. Dutta ◽  
H. S. Kushwaha

A throughwall axial crack may develop in an elbow or pipe bend due to service related degradation mechanism. It is very important to know the plastic collapse moment (PCM) of an elbow in the presence of a throughwall axial crack. The existing PCM equations of throughwall axially cracked (TAC) elbows are either too conservative or inadequate to correctly quantify the weakening effect due to the presence of the crack. Further, they do not differentiate between closing and opening modes of bending although deformation characteristics under these two modes are completely different. Therefore, the present study has been undertaken to investigate through 3-D elastic-plastic finite element analysis. A total of 84 elbows with various sizes of axial cracks (a/Dm = 0–1), different wall thickness (R/t = 5 — 20), different elbow bend radii (Rb/R = 2,3) and two different bending modes, namely closing and opening have been considered in the analysis. Elastic-perfectly plastic stress-strain response of material has been assumed. Both geometric and material non-linearity are considered in the analysis. Crack closing is observed in most of the cases. To capture the crack closure effect, contact analysis has been performed. Plastic collapse moments have been evaluated from moment — end rotation curves by twice-elastic slope method. From these results, closed-form equations are proposed to evaluate plastic collapse moments of elbows under closing and opening mode of bending moment. The predictions of these proposed equations are compared with the test data available in the literature. Matching between predictions and experimental results is found to be satisfactory.

2004 ◽  
Vol 126 (3) ◽  
pp. 307-317 ◽  
Author(s):  
J. Chattopadhyay ◽  
A. K. S. Tomar ◽  
B. K. Dutta ◽  
H. S. Kushwaha

A large throughwall circumferential crack in an elbow subjected to in-plane bending moment can significantly reduce its collapse load. Therefore, it is very important to know the collapse moment of an elbow in the presence of a throughwall circumferential crack. The existing closed-form collapse moment equations of throughwall circumferentially cracked elbows are either too conservative or inadequate to correctly quantify the weakening effect due to the presence of the crack, especially for opening mode of bending moment. Therefore, the present study has been carried out to investigate through elastic-plastic finite element analysis the effect of a throughwall circumferential crack on the collapse moment of an elbow under in-plane bending moment. A total of 72 cases of elbows with various sizes of circumferential cracks (2θ=0–150 deg), different wall thickness (R/t=5–20), different elbow bend radii Rb/R=2,3 and two different bending modes, namely closing and opening have been considered in the analysis. Elastic-perfectly plastic stress-strain response of material has been assumed. Collapse moments have been evaluated from moment-end rotation curves by twice-elastic slope method. From these results, closed-form expressions have been proposed to evaluate collapse moments of elbows under closing and opening mode of bending moment. The predictions of these proposed equations have been compared with 8 published elbow test data and are found to be within ±11% variation except for one case.


2020 ◽  
Vol 57 (3) ◽  
pp. 448-452 ◽  
Author(s):  
A.S. Lees ◽  
J. Clausen

Conventional methods of characterizing the mechanical properties of soil and geogrid separately are not suited to multi-axial stabilizing geogrid that depends critically on the interaction between soil particles and geogrid. This has been overcome by testing the soil and geogrid product together as one composite material in large specimen triaxial compression tests and fitting a nonlinear failure envelope to the peak failure states. As such, the performance of stabilizing, multi-axial geogrid can be characterized in a measurable way. The failure envelope was adopted in a linear elastic – perfectly plastic constitutive model and implemented into finite element analysis, incorporating a linear variation of enhanced strength with distance from the geogrid plane. This was shown to produce reasonably accurate simulations of triaxial compression tests of both stabilized and nonstabilized specimens at all the confining stresses tested with one set of input parameters for the failure envelope and its variation with distance from the geogrid plane.


1991 ◽  
Vol 113 (1) ◽  
pp. 93-101 ◽  
Author(s):  
S. M. Kulkarni ◽  
C. A. Rubin ◽  
G. T. Hahn

The present paper, describes a transient translating elasto-plastic thermo-mechanical finite element model to study 2-D frictional rolling contact. Frictional two-dimensional contact is simulated by repeatedly translating a non-uniform thermo-mechanical distribution across the surface of an elasto-plastic half space. The half space is represented by a two dimensional finite element mesh with appropriate boundaries. Calculations are for an elastic-perfectly plastic material and the selected thermo-physical properties are assumed to be temperature independent. The paper presents temperature variations, stress and plastic strain distributions and deformations. Residual tensile stresses are observed. The magnitude and depth of these stresses depends on 1) the temperature gradients and 2) the magnitudes of the normal and tangential tractions.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Silambarasan R. ◽  
Veerappan A.R. ◽  
Shanmugam S.

Purpose The purpose of this study is to investigate the effect of structural deformations and bend angle on plastic collapse load of pipe bends under an in-plane closing bending moment (IPCM). A large strain formulation of three-dimensional non-linear finite element analysis was performed using an elastic perfectly plastic material. A unified mathematical solution was proposed to estimate the collapse load of pipe bends subjected to IPCM for the considered range of bend characteristics. Design/methodology/approach ABAQUS was used to create one half of the pipe bend model due to its symmetry on the longitudinal axis. Structural deformations, i.e. ovality (Co) and thinning (Ct) varied from 0% to 20% in 5% steps while the bend angle (ø) varied from 30° to 180° in steps of 30°. Findings The plastic collapse load decreases as the bend angle increase for all pipe bend models. A remarkable effect on the collapse load was observed for bend angles between 30° and 120° beyond which a decline was noticed. Ovality had a significant effect on the collapse load with this effect decreasing as the bend angle increased. The combined effect of thinning and bend angle was minimal for the considered models and the maximum per cent variation in collapse load was 5.76% for small bend angles and bend radius pipe bends and less than 2% for other cases. Originality/value The effect of structural deformations and bend angle on collapse load of pipe bends exposed to IPCM has been not studied in the existing literature.


Author(s):  
Anindya Bhattacharya ◽  
Sachin Bapat ◽  
Hardik Patel ◽  
Shailan Patel

Bends are an integral part of a piping system. Because of the ability to ovalize and warp they offer more flexibility when compared to straight pipes. Piping Code ASME B31.3 [1] provides flexibility factors and stress intensification factors for the pipe bends. Like any other piping component, one of the failure mechanisms of a pipe bend is gross plastic deformation. In this paper, plastic collapse load of pipe bends have been analyzed for various bend parameters (bend parameter = tRbrm2) under internal pressure and in-plane bending moment for various bend angles using both small and large deformation theories. FE code ABAQUS version 6.9EF-1 has been used for the analyses.


2000 ◽  
Author(s):  
Bhavani V. Sankar ◽  
Manickam Narayanan ◽  
Abhinav Sharma

Abstract Nonlinear finite element analysis was used to simulate compression tests on sandwich composites containing debonded face sheets. The core was modeled as an elastic-perfectly-plastic material, and the face-sheet as elastic isotropic. The effects of core plasticity, face-sheet and core thickness, and debond length on the maximum load the beam can carry were studied. The results indicate that the core plasticity is an important factor that determines the maximum load.


Author(s):  
Hisashi Koike ◽  
Masaji Mori ◽  
Daisuke Fujiwara ◽  
Takashi Shimomura

The thimble tube, which is made of Zircaly-4, is one of the main components of a PWR fuel assembly. The thimble tube has an important role as a structural member of the skeleton. Another role of the thimble tube is to guide a rod cluster control assembly (RCCA) for insertion during the reactor operation, and the function has to be assured not only in normal operation but in a seismic event. In a horizontal seismic event, the fuel assembly vibrates laterally, which gives bending moment to the thimble tube. In addition, axial compressive force acts on the thimble tube in a vertical seismic event. The integrity of the thimble tube has to be maintained while this force and moment act. Mitsubishi has confirmed by the elastic stress analysis that the stress of the thimble tube is lower than the limit value requested for the seismic event. The stress evaluation method is based on the ASME code. The ASME code also describes the limit analysis which is available when the predicted stress is beyond elastic region of the material. In the analysis, the material is assumed to be elastic-perfectly plastic, and the maximum load that the structure can carry is calculated. For the reason mentioned above, the allowable limit of the thimble tube should be determined as a function between the force and the moment. We are planning to examine the allowable limit experimentally. As a step before testing, an analytical approach for the limit is discussed in this paper. Firstly, the allowable limit is calculated by a beam model assuming elastic-perfectly plastic material, based on the ASME code. Secondly, a 3D model analysis with elastic-plastic material is performed to predict the practical strength. Based on the comparison with the analysis using elastic-perfectly plastic material, ASME based limit is considerably conservative compared with the one with the actual stress-strain curve. Conversely, this means there is enough room to rationalize the allowable limit. As the future work, the experiment will be conducted to obtain the practical limit of the thimble tube and to verify the analysis results.


Author(s):  
Hany F. Abdalla ◽  
Mohammad M. Megahed ◽  
Maher Y. A. Younan

In this paper the shakedown limit load is determined for a long radius 90-degree pipe bend using two different techniques. The first technique is a simplified technique which utilizes small displacement formulation and elastic-perfectly-plastic material model. The second technique is an iterative based technique which uses the same elastic-perfectly-plastic material model, but incorporates large displacement effects accounting for geometric non-linearity. Both techniques use the finite element method for analysis. The pipe bend is subjected to constant internal pressure magnitudes and cyclic bending moments. The cyclic bending loading includes three different loading patterns namely; in-plane closing, in-plane opening, and out-of-plane bending. The simplified technique determines the shakedown limit load (moment) without the need to perform full cyclic loading simulations or conventional iterative elastic techniques. Instead, the shakedown limit moment is determined by performing two analyses namely; an elastic analysis and an elastic-plastic analysis. By extracting the results of the two analyses, the shakedown limit moment is determined through the calculation of the residual stresses developed in the pipe bend. The iterative large displacement technique determines the shakedown limit moment in an iterative manner by performing a series of full elastic-plastic cyclic loading simulations. The shakedown limit moment output by the simplified technique (small displacement) is used by the iterative large displacement technique as an initial iterative value. The iterations proceed until an applied moment guarantees a structure developed residual stress, at load removal, equals or slightly less than the material yield strength. The shakedown limit moments output by both techniques are used to generate shakedown diagrams of the pipe bend for a spectrum of constant internal pressure magnitudes for the three loading patterns stated earlier. The maximum moment carrying capacity (limit moment) the pipe bend can withstand and the elastic limit are also determined and imposed on the shakedown diagram of the pipe bend. Comparison between the shakedown diagrams generated by the two techniques, for the three loading patterns, is presented.


2018 ◽  
Vol 192 ◽  
pp. 02023
Author(s):  
Sutham Arun ◽  
Thongchai Fongsamootr

This paper aims to analyze the plastic collapse moment of circumferential cracked cylinder under pure torsion using the NSC approach and 3D FE model. The material considered in this work is assumed to be elastic-perfectly plastic. The influences of geometric parameters of crack and cylinder, such as Rm/t, a/t and θ/π on solution of plastic collapse load are also investigated. The analysis shows that for the case of a/t < 0.75, the values of limit torsion moment can be estimated by NSC analysis which provides conservative results. However, for the case of deeper crack, a/t ≥ 0.75, the limit load solution predicted by NSC approach may not be safe, because the distribution of stress at yielding state does not correspond to the NSC assumption. Therefore, the approximated solution of collapse torsion moment for the case of deeper crack with a/t ≥ 0.75 is proposed based on FE analysis.


2012 ◽  
Vol 134 (6) ◽  
Author(s):  
Phuong H. Hoang ◽  
Kunio Hasegawa ◽  
Bostjan Bezensek ◽  
Yinsheng Li

The circumferential flaw evaluation procedures in ASME Boiler and Pressure Vessel Code Section XI nonmandatory Appendix C are currently limited to straight pipes under pressure and bending loads without consideration of torsion loading. The Working Group on Pipe Flaw Evaluation of the ASME Boiler and Pressure Vessel Code is developing guidance for considering the effects of torsion by a mean of an equivalent bending moment, which is a square root of sum square combination of bending moment and torsion load with a weighted factor for torsion moment. A torsion weighted factor, Ce, is established in this paper using large strain finite element limit load analysis with elastic perfectly plastic materials. Planar flaws and nonplanar flaws in a 10.75 in. (273 mm) OD pipe are investigated. Additionally, a finite element J-integral calculation is performed for a planar through wall circumferential flaw with elastic plastic materials subjected to bending and torsion load combinations. The proposed Ce factor for planar flaws is intended for use with the ASME B&PV Code Section XI, Appendix C for limit load and Elastic Plastic Fracture Mechanics (EPFM) circumferential planar flaw evaluations.


Sign in / Sign up

Export Citation Format

Share Document