Creep Damage Analysis of High Pressurized Steam Pipelines Using Omega Method

Author(s):  
Gong H. Jung ◽  
Parikh Prashant ◽  
Jorge Penso ◽  
Dong S. Kim

Cracks, bulges and leaks have been found in weld-o-let connections that were installed in high-pressure steam lines. Creep has been known as one of failure mechanisms associated with cracks on the weld-o-let connections. A success of weld repairing of the creep-damaged connections strongly relies on how well the creep-damaged material is removed. The FE (finite element) model was developed to predict the creep damage on the weld-o-let connections. Omega creep model and time fraction damage model were incorporated. The developed FE model successfully explained why cracks were found on the outer surface of saddle point in most of the connections. The results of creep analyses were successfully incorporated into development of a weld repair plan of the creep damaged connections.

2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Baoyun Zhao ◽  
Wei Huang ◽  
Zhile Shu ◽  
Mengmeng Han ◽  
Yanbo Feng

Long-term stability and safety of the Bayer red mud (BRM) disposal field is very important for the local residents’ life, which necessitates the knowledge of its creep behavior. In order to investigate the creep behavior of BRM, a series of triaxial drained creep tests were conducted by using an improved triaxial creep apparatus. The results indicate that the creep behavior of BRM is significant with confining and deviatoric stresses being critical factors. The creep strain is in a nonlinear relationship with stress and time, and a larger deviator stress will lead to a larger creep strain. The main failure mechanism of BRM is plastic shear, accompanied by a significant compression and ductile dilatancy. Based on the test results, two well-established creep models, the Burgers creep model and Singh–Mitchell creep model, were used to comparatively analyze the creep behavior of the Bayer red mud under a certain stress level. Then, an improved Burgers creep damage constitutive model with the addition of a damage variable was proposed, whose parameters were also analyzed in detail. The comparison of the calculated values of the creep model and the experimental values shows that the proposed creep damage model can better describe the instant elastic deformation, attenuation creep, steady-state creep, and accelerated creep stages of the Bayer red mud.


Author(s):  
Nasrul Azuan Alang ◽  
Lei Zhao ◽  
Kamran Nikbin

Conventional strain-based numerical prediction assumes that failure occurs when ductility is exhausted or accumulation of creep strain reaches the critical failure strain. Due to instability at the onset of rupture, the failure strain value appears to be scattered and leads to the erroneousness in prediction. In this paper, a new local constraint-based damage model incorporating the Monkman–Grant ductility, as a measure of strain during uniform creep deformation stage, was implemented into a Finite Element (FE) model to predict the creep damage and rupture of Grade 92 steel under uniaxial and multiaxial stress states. The prediction was applied on plain and notched bar specimens with various notch acuities. The uniaxial stress-dependent Monkman–Grant (MG) failure strain was adopted in the FE to simulate the influence of the constraints which were induced by the creep damage. The implication of reduced failure strain in long-term creep time on the rupture prediction is discussed. The multiaxial MG failure strain of the notched bar, which has a lower value than uniaxial failure strain due to the geometrical constraint, was estimated based on the linear inverse relationship between normalised MG failure strain and normalised triaxiality factor. It was found that the results obtained from the proposed technique were in good agreement with the experimental data within the scatter band of ± factor of 2. It was shown that MG failure strain can be used as an alternative to strain at fracture. MG strain outweighed strain at fracture because the determination of its value only required short-term testing to be performed. In most cases considered in the present investigation, the rupture-type fracture was predicted, however, there was evidence that under high constraint and low stress, stable crack propagation occurred before fracture. The location of the maximum creep damage was found to be dependent on the creep time, geometry or acuity level of the specimen. For sharp notch specimen, the failure was initiated near the notch root, however, as the notch radius increased, the initiation location moved further away towards the specimen centre.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yafeng Yao ◽  
Hua Cheng ◽  
Jian Lin ◽  
Jingchen Ji

AbstractThe creep characteristics of frozen rock and soil are crucial for construction safety in cases of underground freezing. Uniaxial compression tests and uniaxial creep tests were performed at temperatures of − 10, − 15, − 20, and − 25 °C for silty clay used in Nantong metro freezing construction to investigate the effect law of the stress–strain curves and creep curves. However, owing to the complex effects of factors such as temperature and ground pressure, the mechanical properties of underground frozen silty clay are uncertain. The Burgers creep damage model was established by using an elastic damage element to simulate the accelerated creep stage. The traditional particle swarm optimization algorithm was improved using the inertia weight and the fuzzy random coefficient. The creep parameters of the Burgers damage model were optimized using the improved fuzzy random particle swarm algorithm at different temperatures and pressure levels. Engineering examples indicated that the optimized creep model can more effectively characterize the creep stages of frozen silty clay in Nantong metro freezing construction. The improved fuzzy random particle swarm algorithm has wider engineering applicability and faster convergence than the traditional algorithm.


Author(s):  
Fujun Liu ◽  
Ping Tang ◽  
Shuai Kong ◽  
Zhangwei Ling ◽  
Muling Zheng ◽  
...  

P91-type steel is widely used for the high-temperature pipe work components in advanced power plants. The creep behavior of the P91-type steel has been studied by many researchers during the past years. Since it is well known that the creep behavior of P91-type steel cannot be satisfactorily described by a simple, Arrhenius-type, power-law constitutive model. While Norton-Bailey creep is a deviatoric temperature-dependent creep model, furbished with a time-hardening creep model, which is the most common model for modeling primary and secondary creep together, and Kachanov-Rabotnov creep damage theory described with Norton creep model can be used to model tertiary creep. Both of them based on Norton creep constitutive equation. In this paper, based on the Norton-Bailey creep law and Kachanov-Rabotnov creep damage theory, a new combined constitutive model has been developed, in which the creep and damage function are both considered as nonlinear variables. The damage parameters in the model have clear physical meaning and can be determined from the benchmark experiment. The results indicated that this combined damage model was applicable to describe the full damage evolution for P91-type steel.


2013 ◽  
Vol 300-301 ◽  
pp. 1186-1192 ◽  
Author(s):  
Wen Ling Chen ◽  
Fa Suo Zhao

A linear viscoelastic plastic creep model of mica-quartzose schist is established by using the method of establishing combined-linear-component model based on triaxial creep test. The micro-structural changes of mica-quartzose schist during triaxial creep process are observed by using the scanning electron microscope test, based on that, the relation of macro-stress and macro-strain with porosity and damage variable are established through statistical damage theory and simplified mechanical model respectively, the creep damage variable is obtained by further derivation on the basis of above study. The creep damage variable is simplified according to the whole creep process curve, substitutes the simplified creep damage to the estabilished linear viscoelastic plastic creep model of mica-quartzose schist, considering the change of modulus and viscosity during creep process, a viscoelastic plastic damage model of mica-quartzose schist is established. The model parameters are got by segment fitting, the good consistency of the test curves and the fitted curves shows the right and reasonable of the creep model, it also shows that the model can well describe the nonlinear accelerated creep stage. Sensitivity analysis shows that parameter m has greater influence on the accelerated creep deformation than parameter a.


Author(s):  
Ashwini Gautam ◽  
Chris Fuller ◽  
James Carneal

This work presents an extensive analysis of the properties of distributed vibration absorbers (DVAs) and their effectiveness in controlling the sound radiation from the base structure. The DVA acts as a distributed mass absorber consisting of a thin metal sheet covering a layer of acoustic foam (porous media) that behaves like a distributed spring-mass-damper system. To assess the effectiveness of these DVAs in controlling the vibration of the base structures (plate) a detailed finite elements model has been developed for the DVA and base plate structure. The foam was modeled as a poroelastic media using 8 node hexahedral elements. The structural (plate) domain was modeled using 16 degree of freedom plate elements. Each of the finite element models have been validated by comparing the numerical results with the available analytical and experimental results. These component models were combined to model the DVA. Preliminary experiments conducted on the DVAs have shown an excellent agreement between the results obtained from the numerical model of the DVA and from the experiments. The component models and the DVA model were then combined into a larger FE model comprised of a base plate with the DVA treatment on its surface. The results from the simulation of this numerical model have shown that there has been a significant reduction in the vibration levels of the base plate due to DVA treatment on it. It has been shown from this work that the inclusion of the DVAs on the base plate reduces their vibration response and therefore the radiated noise. Moreover, the detailed development of the finite element model for the foam has provided us with the capability to analyze the physics behind the behavior of the distributed vibration absorbers (DVAs) and to develop more optimized designs for the same.


2021 ◽  
pp. 002199832110335
Author(s):  
Osman Kartav ◽  
Serkan Kangal ◽  
Kutay Yücetürk ◽  
Metin Tanoğlu ◽  
Engin Aktaş ◽  
...  

In this study, composite overwrapped pressure vessels (COPVs) for high-pressure hydrogen storage were designed, modeled by finite element (FE) method, manufactured by filament winding technique and tested for burst pressure. Aluminum 6061-T6 was selected as a metallic liner material. Epoxy impregnated carbon filaments were overwrapped over the liner with a winding angle of ±14° to obtain fully overwrapped composite reinforced vessels with non-identical front and back dome layers. The COPVs were loaded with increasing internal pressure up to the burst pressure level. During loading, deformation of the vessels was measured locally with strain gauges. The mechanical performances of COPVs designed with various number of helical, hoop and doily layers were investigated by both experimental and numerical methods. In numerical method, FE analysis containing a simple progressive damage model available in ANSYS software package for the composite section was performed. The results revealed that the FE model provides a good correlation as compared to experimental strain results for the developed COPVs. The burst pressure test results showed that integration of doily layers to the filament winding process resulted with an improvement of the COPVs performance.


Materials ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 4362
Author(s):  
Renata Kotynia ◽  
Hussien Abdel Baky ◽  
Kenneth W. Neale

This paper presents an investigation of the bond mechanism between carbon fibre reinforced polymer (CFRP) laminates, concrete and steel in the near-surface mounted (NSM) CFRP-strengthened reinforced concrete (RC) beam-bond tests. The experimental program consisting of thirty modified concrete beams flexurally strengthened with NSM CFRP strips was published in. The effects of five parameters and their interactions on the ultimate load carrying capacities and the associated bond mechanisms of the beams are investigated in this paper with consideration of the following investigated parameters: beam span, beam depth, longitudinal tensile steel reinforcement ratio, the bond length of the CFRP strips and compressive concrete strength. The longitudinal steel reinforcement was cut at the beam mid-span in four beams to investigate a better assessment of the influence of the steel reinforcement ratio on the bond behaviour of CFRP to concrete bond behaviour. The numerical analysis implemented in this paper is based on a nonlinear micromechanical finite element model (FEM) that was used for investigation of the flexural behaviour of NSM CFRP-strengthened members. The 3D model based on advanced CFRP to concrete bond responses was introduced to modelling of tested specimens. The FEM procedure presents the orthotropic behaviour of the CFRP strips and the bond response between the CFRP and concrete. Comparison of the experimental and numerical results revealed an excellent agreement that confirms the suitability of the proposed FE model.


2021 ◽  
Vol 28 (3) ◽  
pp. 954-967
Author(s):  
Jie-lin Li ◽  
Long-yin Zhu ◽  
Ke-ping Zhou ◽  
Hui Chen ◽  
Le Gao ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document