ORNL Pre-Test Analyses of a Large-Scale Experiment in STYLE

Author(s):  
Paul T. Williams ◽  
Shengjun Yin ◽  
Hilda B. Klasky ◽  
B. Richard Bass

Oak Ridge National Laboratory (ORNL) is conducting a series of numerical analyses to simulate a large scale mock-up experiment planned within the European Network for Structural Integrity for Lifetime Management – non-RPV Components (STYLE). STYLE is a European cooperative effort to assess the structural integrity of (non-reactor pressure vessel) reactor coolant pressure boundary components relevant to ageing and life-time management and to integrate the knowledge created in the project into mainstream nuclear industry assessment codes. ORNL contributes “work-in-kind” support to STYLE Work Package 2 (Numerical Analysis/Advanced Tools) and Work Package 3 (Engineering Assessment Methods/LBB Analyses). This paper summarizes the current status of ORNL analyses of the STYLE Mock-Up3 large-scale experiment to simulate and evaluate crack growth in a cladded ferritic pipe. The analyses are being performed in two parts. In the first part, advanced fracture mechanics models are being developed and performed to evaluate several experiment designs taking into account the capabilities of the test facility while satisfying the test objectives. Then these advanced fracture mechanics models will be utilized to simulate the crack growth in the large scale mock-up test. For the second part, the recently developed ORNL SIAM-PFM open-source, cross-platform, probabilistic computational tool will be used to generate an alternative assessment for comparison with the advanced fracture mechanics model results. The SIAM-PFM probabilistic analysis of the Mock-Up3 experiment will utilize fracture modules that are installed into a general probabilistic framework. The probabilistic results of the Mock-Up3 experiment obtained from SIAM-PFM will be compared to those results generated using the deterministic 3D nonlinear finite-element modeling approach. The objective of the probabilistic analysis is to provide uncertainty bounds that will assist in assessing the more detailed 3D finite-element solutions and to also assess the level of confidence that can be placed in the best-estimate finite-element solutions.

Author(s):  
Harry E. Coules

Abstract Structural integrity assessment often requires the interaction of multiple closely-spaced cracks or flaws in a structure to be considered. Although many procedures for structural integrity assessment include rules for determining the significance of flaw interaction, and for re-characterising interacting flaws, these rules can be difficult to validate in a fracture mechanics framework. int_defects is an open-source MATLAB toolbox which uses the Abaqus finite element suite to perform large-scale parametric studies in cracked-body analysis. It is designed to allow developers of assessment codes to check the accuracy of simplified interaction criteria under a wide range of conditions, e.g. for different interacting flaw geometries, material models and loading cases. int_defects can help analysts perform parametric studies to determine linear elastic crack tip stress field parameters, elastic-plastic parameters and plastic limit loads for simple three-dimensional cracked bodies relevant to assessment codes. This article focusses on the validation of int_defects using existing fracture mechanics results. Through a set of validation examples, int_defects is shown to produce accurate results for a very wide range of cases in both linear and non-linear cracked-body analysis. Nevertheless, it is emphasised that users of this software should be conscious of the inherent limitations of LEFM and EPFM theory when applied to real fracture processes, and effects such as constraint loss should be considered when formulating interaction criteria.


1989 ◽  
Vol 111 (3) ◽  
pp. 170-176 ◽  
Author(s):  
J. C. P. Kam ◽  
D. A. Topp ◽  
W. D. Dover

Evaluation of the structural integrity of offshore structures requires information on the reliability of nondestructive testing, the accuracy of fatigue crack growth modeling and other data. The University College London Underwater NDE Centre has been set up to provide information on the effectiveness and reliability of different nondestructive testing methods. To achieve this aim, a large library of cracked specimens will be assembled. In the preliminary phase of producing this library, a series of large-scale welded tubular joints were fatigue tested and the crack growth was fully monitored with the ACPD technique. This paper will describe briefly the background to the crack library and present the data obtained from fatigue tests. It will also describe a new model for fatigue crack growth prediction in tubular joints using fracture mechanics. This model allows the prediction of the size effect noted previously in the stress/life curves for tubular joints.


Author(s):  
Shengjun Yin ◽  
Paul T. Williams ◽  
Hilda B. Klasky ◽  
B. Richard Bass

The Oak Ridge National Laboratory (ORNL) is conducting structural analyses, both deterministic and probabilistic, to simulate a large scale mock-up experiment planned within the European Network for Structural Integrity for Lifetime Management – non-RPV Components (STYLE). The paper summarizes current ORNL analyses of STYLE’s Mock-Up3 experiment to simulate/evaluate ductile crack growth in a cladded ferritic pipe. Deterministic analyses of the large-scale bending test of a ferritic surge pipe, with an internal circumferential crack, are being simulated with a number of local micromechanical approaches, such as Gurson-Tvergaard-Needleman (GTN) model. Both FEACrack [1] and ABAQUS [2] general purpose finite element programs are being used to predict the failure load and the failure mode, i.e. ductile tearing or net-section collapse, as part of the pre-test phase of the project. Companion probabilistic analyses of the experiment are utilizing the ORNL developed open-source Structural Integrity Assessment Modular - Probabilistic Fracture Mechanics (SIAM-PFM) framework. SIAM-PFM contains engineering assessment methodologies such as the tearing instability (J-T analysis) module developed for inner surface cracks under bending load. The driving force J-integral estimations are based on the SC.ENG1 or SC.ENG2 models. The J-A2 methodology is used to transfer (constraint-adjust) J-R curve material data from standard test specimens to the Mock-Up3 experiment configuration. The probabilistic results of the Mock-Up3 experiment obtained from SIAM-PFM will be compared to those generated using the deterministic finite element modeling approach. The objective of the probabilistic analysis is to provide uncertainty bounds that will assist in assessing the more detailed 3D finite-element solutions and to also assess the level of confidence that can be placed in the best-estimate finite-element solutions.


Author(s):  
Shengjun Yin ◽  
Paul T. Williams ◽  
B. Richard Bass

This paper describes numerical analyses performed to simulate warm pre-stress (WPS) experiments conducted with large-scale cruciform specimens within the Network for Evaluation of Structural Components (NESC-VII) project. NESC-VII is a European cooperative action in support of WPS application in reactor pressure vessel (RPV) integrity assessment. The project aims in evaluation of the influence of WPS when assessing the structural integrity of RPVs. Advanced fracture mechanics models will be developed and performed to validate experiments concerning the effect of different WPS scenarios on RPV components. The Oak Ridge National Laboratory (ORNL), USA contributes to the Work Package-2 (Analyses of WPS experiments) within the NESC-VII network. A series of WPS type experiments on large-scale cruciform specimens have been conducted at CEA Saclay, France, within the framework of NESC VII project. This paper first describes NESC-VII feasibility test analyses conducted at ORNL. Very good agreement was achieved between AREVA NP SAS and ORNL. Further analyses were conducted to evaluate the NESC-VII WPS tests conducted under Load-Cool-Transient-Fracture (LCTF) and Load-Cool-Fracture (LCF) conditions. This objective of this work is to provide a definitive quantification of WPS effects when assessing the structural integrity of reactor pressure vessels. This information will be utilized to further validate, refine, and improve the WPS models that are being used in probabilistic fracture mechanics computer codes now in use by the NRC staff in their effort to develop risk-informed updates to Title 10 of the U.S. Code of Federal Regulations (CFR), Part 50, Appendix G.


Author(s):  
Dominique Moinereau ◽  
Patrick Le Delliou ◽  
Anna Dahl ◽  
Yann Kayser ◽  
Szabolcs Szavai ◽  
...  

The 4-years European project ATLAS+ project was launched in June 2017. Its main objective is to develop advanced structural assessment tools to address the remaining technology gaps for the safe and long term operation of nuclear reactor pressure coolant boundary systems. The transferability of ductile material properties from small scale fracture mechanics specimens to large scale components is one of the topics of the project. A large programme of experimental work is to be conducted in support of the development and validation of advanced tools for structural integrity assessment within the framework of the work-package 1 (WP 1): Design and execution of simulation oriented experiments to validate models at different scales. The experimental work is based on a full set of fracture mechanics experiments conducted on standard specimens and large scale components (several pipes and one mock-up), including a full materials characterization. Three materials are considered: • a ferritic steel 15NiCuMoNb5 (WB 36) • an aged austenitic stainless steel weld • a VVER (eastern PWR) dissimilar metal weld (DMW) The paper presents the WP 1, the experimental programme and summarizes the first results.


Author(s):  
Ole Tom Vårdal

In structural integrity management, it is essential to know the fatigue crack growth potential. The lessons learned from use of refined fatigue analyses, fracture mechanics and probabilistic methods for platforms in-service are presented. For ageing offshore units of semi-submersible design, the inspection history of more than 20 000 NDT inspections and detection of close to 1000 fatigue cracks, are used in this study. These experience data are used to assess the potential for Non-conservative estimate for the fatigue crack growth potential.


Author(s):  
T. Sriskandarajah ◽  
Daowu Zhou ◽  
Lingjun Cao

There is a concern on the fracture integrity of the partially over-matching or under-matching weld during reel-lay installation where there is large plastic strain in the pipe. Conventional ECA procedures such as BS7910 and DNV-OS-F101 are applicable for fully over-matching welds only, due to limitations in the reference stress solution (or limit load solutions). The ECA procedure based on 3D finite element (FE) analysis was developed for partially over-matching welds or under-matching. The methodology has been successfully applied to several projects of industry-wide significance, with partially over-matching welds in offshore pipelines. This paper provides a case study validating the crack growth from FE based ECA methodology against the large scale bending trial test where the pipe containing the notched defect was pre-strained under a series of straining cycles. A comparison of the crack growth between 3D FEA and the large scale bending test was presented.


Author(s):  
Kaworu Yodo ◽  
Hiroshi Kawai ◽  
Hiroshi Okada ◽  
Masao Ogino ◽  
Ryuji Shioya

Fracture mechanics analysis using the finite element method has been one of the key methodologies to evaluate structural integrity for aging infrastructures such as aircraft, ship, power plants, etc. However, three-dimensional crack analyses for structures with highly complex three-dimensional shapes have not widely been used, because of many technical difficulties such as the lack of enough computational power. The authors have been developing a fracture mechanics analysis system that can deal with arbitrary shaped cracks in three-dimensional structures. The system consists of mesh generation software, a finite element analysis program and a fracture mechanics module. In our system, a Virtual Crack Closure-Integral Method (VCCM) for the quadratic tetrahedral finite elements is adopted to evaluate the stress intensity factors. This system can perform the three-dimensional fracture analyses. Fatigue and SCC crack propagation analyses with more than one cracks of arbitrary complicated shapes and orientations. The rate and direction of crack propagation are predicted by using appropriate formulae based on the stress intensity factors. When the fracture mechanics analysis system is applied to the complex shaped aging structures with the cracks which are modeled explicitly, the size of finite element analysis tends to be very large. Therefore, a large scale parallel structural analysis code is required. We also have been developing an open-source CAE system, ADVENTURE. It is based on the hierarchical domain decomposition method (HDDM) with the balancing domain decomposition (BDD) pre-conditioner. A general-purpose parallel structural analysis solver, ADVENTURE_Solid is one of the solver modules of the ADVENTURE system. In this paper, we combined VCCM for the tetrahedral finite element with ADVENTURE system and large-scale fracture analyses are fully automated. They are performed using the massively parallel super computer ES2 (Earth Simulator 2) which is owned and run by JAMSTEC (Japan Agency for Marine-Earth Science and Technology).


2012 ◽  
Vol 134 (5) ◽  
Author(s):  
Xian-Kui Zhu

The J-integral resistance curve is the most important material properties in fracture mechanics that is often used for structural integrity assessment. ASTM E1820 is a commonly accepted fracture toughness test standard for measuring the critical value of J-integral at the onset of ductile fracture and J-R curve during ductile crack tearing. The recommended test procedure is the elastic unloading compliance method. For a stationary crack, the J-integral is simply calculated from the area under the load-displacement record using the η-factor equation. For a growing crack, the J-integral is calculated using the incremental equation proposed by Ernst et al. (1981, “Estimations on J-integral and Tearing Modulus T From a Single Specimen Test Record,” Fracture Mechanics: Thirteenth Conference, ASTM STP 743, pp. 476–502) to consider the crack growth correction. For the purpose of obtaining accurate J-integral values, ASTM E1820 requires small and uniform crack growth increments in a J-R curve test. In order to allow larger crack growth increments in an unloading compliance test, an improved J-integral estimation is needed. Based on the numerical integration techniques of forward rectangular, backward rectangular, and trapezoidal rules, three incremental J-integral equations are developed. It demonstrates that the current ASTM E1820 procedure is similar to the forward rectangular result, and the existing Garwood equation is similar to the backward rectangular result. The trapezoidal result has a higher accuracy than the other two, and thus it is proposed as a new formula to increase the accuracy of a J-R curve when a larger crack growth increment is used in testing. An analytic approach is then developed and used to evaluate the accuracy of the proposed incremental equations using single-edge bending and compact tension specimens for different hardening materials. It is followed by an experimental evaluation using actual fracture test data for HY80 steel. The results show that the proposed incremental J-integral equations can obtain much improved results of J-R curves for larger crack growth increments and are more accurate than the present ASTM E1820 equation.


2011 ◽  
Vol 2011 (0) ◽  
pp. _OS2506-1_-_OS2506-3_
Author(s):  
Takuya OGAWA ◽  
Yukiko NARAHARA ◽  
Chihiro NARAZAKI ◽  
Masao ITATANI ◽  
Tadashi MUROFUSHI ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document