Creep Life Simulation and Assessment of High Temperature Piping Systems and Components

Author(s):  
Brian Rose ◽  
James Widrig

High temperature piping systems and associated components, elbows and bellows in particular, are vulnerable to damage from creep. The creep behavior of the system is simulated using finite element analysis (FEA). Material behavior and damage is characterized using the MPC Omega law, which captures creep embrittlement. Elbow elements provide rapid yet accurate modeling of pinching of piping, which consumes a major portion of the creep life. The simulation is used to estimate the remaining life of the piping system, evaluate the adequacy of existing bellows and spring can supports and explore remediation options.

Author(s):  
Michiya Sakai ◽  
Ryuya Shimazu ◽  
Shinichi Matsuura ◽  
Ichiro Tamura

In the seismic response analysis of piping systems, finite element analysis is performed with analysis method guidelines [1]–[4] established based on benchmark analysis. However, since it takes a great deal of effort to carry out finite element analysis, a simplified method to analyze the seismic response of complex piping systems is required. In this research, we propose a method to reduce an equivalent spring-mass system model with low degrees of freedom, which can take into account the main mode of the complicated piping system. Simplified seismic evaluation is carried out using this spring mass system model with low degrees of freedom, and the accuracy of response evaluation is confirmed by comparison with finite element analysis.


2003 ◽  
Vol 125 (3) ◽  
pp. 277-282 ◽  
Author(s):  
Noriyuki Miyazaki ◽  
Toru Ikeda ◽  
Toshihiro Komura

Al 2 O 3 / YAG eutectic composite has been developed for a structural material used in ultra high temperature environments over 1500°C such as a gasturbine. Creep behavior is one of the important material properties in ultra high temperature materials. In the present study, we propose an image-based finite element analysis for estimating the steady state creep behavior of the Al2O3/YAG eutectic composite. In the image-based finite element analysis, microstructure of the material taken by a SEM is modeled into a finite element mesh using a software for image process. Then finite element creep analyses are carried out to obtain the steady state creep behavior of the Al2O3/YAG eutectic composite by using steady state creep constitutive equations for both Al2O3 single crystal and YAG single crystal. The results of steady state creep behavior obtained from the image-based finite element analysis are compared with the experimental results. It is found that the steady state creep behavior of the Al2O3/YAG eutectic composite is accurately estimated by the image-based finite element analysis. Furthermore, we examine the effect of volume fractions of the constituents on the steady state creep behavior of the Al2O3/YAG eutectic composite.


1999 ◽  
Vol 122 (1) ◽  
pp. 22-26 ◽  
Author(s):  
M. Law ◽  
W. Payten ◽  
K. Snowden

Modeling of welded joints under creep conditions with finite element analysis was undertaken using the theta projection method. The results were compared to modeling based on a simple Norton law. Theta projection data extends the accuracy and predictive capability of finite element modeling of critical structures operating at high temperature and pressure. In some cases analyzed, it was found that the results diverged from those gained using a Norton law creep model. [S0094-9930(00)00601-6]


Author(s):  
David Kemp ◽  
Justin Gossard ◽  
Shane Finneran ◽  
Joseph Bratton

Pipeline in-line-inspections (ILI) are used to assess and track the integrity of pipelines, aiding in identifying a variety of features such as: metal loss, dents, out-of-roundness, cracks, etc. The presence of these features can negatively affect the operation, integrity, and remaining life of a pipeline. Proper interpretation of the impacts these features may have on a pipeline are crucial to maintaining the integrity of a pipeline. Several codes and publications exist to assess the severity of these features under known operating conditions, either through empirical formulations or more detailed analysis, in order to aid the operator in determining a corrective action plan. These empirical formulations are generally applicable to assess a singular defect but require a more detailed assessment to evaluate combined defects (i.e. dent in a bend). These detailed assessments typically require a higher level numerical simulation, such as Finite Element Analysis (FEA). This detailed FEA can be quite costly and time consuming to evaluate each set of combined features in a given ILI run. Thus, engineering judgement is critical in determining a worst-case scenario of a given feature set in order to prioritize assessment and corrective action. This study aims to assess dent features (many associated with metal loss) occurring in a pipe bend to determine a worst-case scenario for prioritization of a given feature listing. FEA was used to simulate a field bend of a given radius and angle in order to account for residual stresses in the pipe bend. A rigid indenter was used to form a dent of the approximate length, width, and depth from the ILI data. Separate models were evaluated considering the dent occurring in the intrados, extrados, and neutral axis of the pipe bend to evaluate the worst-case scenario for further assessment. The resulting stresses in the pipe bend-dent geometry, under proper loading were compared to the same dent scenario in a straight pipe segment to develop a stress concentration factor (SCF). This SCF was used in the API 579-1/ASME FFS-1 Fitness for Service (API 579) [1] methodology to determine the impact on the remaining life of the combined features.


2012 ◽  
Vol 568 ◽  
pp. 311-314
Author(s):  
Jun Tian ◽  
Shou Yan Zhong ◽  
Zi Qiong Shi

By Computer finite element analysis, the impact of the interface thickness, the interface module and the short fiber orientation of Al2O3-SiO2(sf)/AZ91D composite on the maximum fiber axial stress and the steady creep rate is studied. Maximum axial stress of the short fiber is in the fiber center, and the axial stress gradually decreases along the direction of the fiber length. When the external stress is constant, the maximum fiber axial stress increases with decreasing of the thickness of the interface, and the steady creep rate increases with the increasing of thickness of the interface. The maximum fiber axial stress increases with the increasing of the interface modulus, the increasing of the interface module improves the load transfer and the creep resistance. Finite element simulation results and experimental results can be well matched to better explain the creep behavior.


2011 ◽  
Vol 133 (5) ◽  
Author(s):  
Hyeong-Yeon Lee ◽  
Kee-Nam Song ◽  
Yong-Wan Kim ◽  
Sung-Deok Hong ◽  
Hong-Yune Park

A process heat exchanger (PHE) transfers the heat generated from a nuclear reactor to a sulfur-iodine hydrogen production system in the Nuclear Hydrogen Development and Demonstration, and was subjected to very high temperature up to 950°C. An evaluation of creep-fatigue damage, for a prototype PHE, has been carried out from finite element analysis with the full three dimensional model of the PHE. The inlet temperature in the primary side of the PHE was 950°C with an internal pressure of 7 MPa, while the inlet temperature in the secondary side of the PHE is 500°C with internal pressure of 4 MPa. The candidate materials of the PHE were Alloy 617 and Hastelloy X. In this study, only the Alloy 617 was considered because the high temperature design code is available only for Alloy 617. Using the full 3D finite element analysis on the PHE model, creep-fatigue damage evaluation at very high temperature was carried out, according to the ASME Draft Code Case for Alloy 617, and technical issues in the Draft Code Case were raised.


Author(s):  
Nazrul Islam ◽  
Tasnim Hassan

Abstract This study evaluates creep-fatigue damage in the modified Grade 91 thick-cylinder tested by Japan Atomic Energy Agency (JAEA), to understand the failure mechanism of critical components of Fast Reactor nuclear plants. As modified Grade 91 demonstrated creep-fatigue interaction induced failure mechanisms, finite element analysis of high-temperature components will require a unified constitutive model (UCM) that can simulate various creep-fatigue responses with reasonable accuracy. Hence, a UCM coupled with various advanced modeling features including the continuum damage modeling features is investigated to demonstrate their predictability of the fatigue, creep and creep-fatigue responses of the modified Grade 91 steel. The modified UCM is implemented into ABAQUS for analysis of creep deformation in the thick cylinder benchmark problem. Finite element analysis results are presented to demonstrate how the thermal cycling influences the creep-deformation of this high-temperature component. It is also demonstrated how thermal cycling’s influence on fatigue life can be determined based on the damage variable incorporated in the UCM.


Ceramics ◽  
2020 ◽  
Vol 3 (2) ◽  
pp. 210-222 ◽  
Author(s):  
Guenter Unterreiter ◽  
Daniel R. Kreuzer ◽  
Bernd Lorenzoni ◽  
Hans U. Marschall ◽  
Christoph Wagner ◽  
...  

Creep behavior is very important for the selection of refractory materials. This paper presents a methodology to measure the compressive creep behavior of fired magnesia materials at elevated temperatures. The measurements were carried out at 1150–1500 °C and under compression loads from 1–8 MPa. Creep strain was calculated from the measured total strain data. The obtained creep deformations of the experimental investigations were subjected to detailed analysis to identify the Norton-Bailey creep law parameters. The modulus of elasticity was determined in advance to simplify the inverse estimation process for finding the Norton-Bailey creep parameters. In the next step; an extended material model including creep was used in a finite element analysis (FEA) and the creep testing procedure was reproduced numerically. Within the investigated temperature and load range; the creep deformations calculated by FEA demonstrated a good agreement with the results of the experimental investigations. Finally; a finite element unit cell model of a quarter brick representing a section of the lining of a ferrochrome (FeCr) electric arc furnace (direct current) was used to assess the thermo-mechanical stresses and strains including creep during a heat-up procedure. The implementation of the creep behavior into the design process led to an improved prediction of strains and stresses.


Sign in / Sign up

Export Citation Format

Share Document