Finite Element Analysis of Creep Behavior of AZ91D Magnesium Matrix Composites Reinforced with Aluminum Silicate Short Fibers

2012 ◽  
Vol 568 ◽  
pp. 311-314
Author(s):  
Jun Tian ◽  
Shou Yan Zhong ◽  
Zi Qiong Shi

By Computer finite element analysis, the impact of the interface thickness, the interface module and the short fiber orientation of Al2O3-SiO2(sf)/AZ91D composite on the maximum fiber axial stress and the steady creep rate is studied. Maximum axial stress of the short fiber is in the fiber center, and the axial stress gradually decreases along the direction of the fiber length. When the external stress is constant, the maximum fiber axial stress increases with decreasing of the thickness of the interface, and the steady creep rate increases with the increasing of thickness of the interface. The maximum fiber axial stress increases with the increasing of the interface modulus, the increasing of the interface module improves the load transfer and the creep resistance. Finite element simulation results and experimental results can be well matched to better explain the creep behavior.

Author(s):  
Graeme Roberts ◽  
T. Sriskandarajah ◽  
Gianluca Colonnelli ◽  
Arnaud Roux ◽  
Alan Roy ◽  
...  

A method of carrying out a combined axial walking and lateral buckling assessment for a flexible flowline has been developed using finite element analysis. The method overcomes limitations of screening assessments which could be inconclusive when applied either to a flexible flowline on an undulating seabed with transverse gradients or to one that buckles during hydrotest. Flexible flowlines that were to be surface-laid on a seabed with longitudinal undulations and transverse gradients were assessed using the method. The flexible flowlines were simulated in their as-laid state, and the simulation incorporated hydrotest pressure and the pressure & temperature gradients and transients associated with multiple start-ups. The objective was to quantify the axial walking and lateral slip tendency of the flexible flowlines and the impact that walking might have on the connected end structures. The lateral buckle locations predicted by finite element analysis were compared to a post-hydrotest survey and the radius of curvature from analysis was compared to the minimum bend radius of the flexible.


2021 ◽  
Author(s):  
Guodong Zhu ◽  
Dawei Gao

Energy efficiency and leakage magnetic field (LMF) are two important issues in inductive chargers. In this work, the maximum achievable coil efficiency and the corresponding LMF strength are formulated as functions of system parameters, and figure of merits (FOM) are proposed for assessing the efficiency and LMF performance of the coil assemblies. The target application is electric vehicle inductive chargers where the LMF is suppressed via passive shielding. The impact of the coil assembly’s geometric parameters on both FOMs is examined through a combination of finite element analysis (FEA) simulation and magnetic circuit analysis, and measures to improve the FOMs are studied Optimization of an exemplary coil assembly within given dimensional limits is conducted and the performance improvement is verified by FEA simulation results. <br>


2020 ◽  
Vol 3 (1) ◽  
Author(s):  
Zhen Ouyang ◽  
Ke Wang ◽  
Zihao Yu ◽  
Kaikai Xu ◽  
Qianyu Zhao ◽  
...  

It is a complex problem to study the interaction between sand castle and flowing water, which needs to consider the complexity of seawater flow and the stress of sand castle structure. The authors use the fluid-solid coupling model to establish the connection between the fluid field and the structural mechanical field, and use the finite element analysis to complete the simulation modeling of the transient process of wave impact and sandcastle foundation deformation. This paper analyzes the stress and the first principal strain of the sand castle foundation in the direction of flow velocity when the sand castle foundation is hit by waves, as a method to judge the strength of the sand castle.The best shape: the boundary value of sand castle collapse caused by strain have been determined, so as to obtain the maximum stress that a sand castle foundation can bear before collapse, which makes it possible to use the fatigue strength calculation theory of sand castle solid to carry out the quantitative calculation of sand castle durability. At the same time, the impact of waves is abstracted as wave motion equation. Finally, the finite element analysis technology is adopted to calculate the main strain of sandcastles of different shapes under the impact of the same wave, and through the comparison of the main strain, the authors get the sandcastle shape with the strongest anti-wave impact ability, which is the eccentric circular platform body.Affected by rain: the authors considered the effect of rainwater infiltration on the sandcastle's stress, and simplified the process of rain as a continuous and uniform infiltration of rain into the sandcastle's surface. The rain changes the gravity of the sand on the castle's surface. Simulation analysis is adopted to calculate the surface stress of sand castle with different degree of water seepage and different geometry. By comparison, it has been found that the smooth cone is more able to withstand the infiltration of rain without collapse. 


2013 ◽  
Vol 135 (4) ◽  
Author(s):  
Se-Chang Kim ◽  
Dae-Geun Cho ◽  
Tae-Gyu Kim ◽  
Se-Hun Jung ◽  
Ja-Choon Koo ◽  
...  

Failures in IT electronics are often caused by falling or external shocks during transportation. These failures cause customers to mistrust the reliability of the products. Many manufacturers of IT electronics have not only used cushioning materials but also increased the shock resistance of their products for failure prevention. Especially in case of printer products, the design of the packaging and the product robustness are extremely important because of their substantial weight and the fragility of the internal modules. For product design, it is essential to understand the impact failure mechanism of the products. In this study, a compression test, a drop impact test, and a finite element analysis (FEA) were performed to analyze the dynamic behaviors of a packaged multifunction printer (MFP). The mechanical properties of a cushioning material were measured by compression tests. The FE models of the cushion packaging and the MFP included the physical characteristics of the internal modules, and their dynamic behaviors were obtained using the commercial software ls-dyna3d. Simulation results were also compared with drop test results to verify the proposed FE models. The shock resistance of the MFP was assessed by stress analysis and strength evaluation. We also expect our FE models will be useful for evaluating the fragility of the internal modules because the models can numerically estimate the shock acceleration profiles of the internal modules, which are difficult to measure experimentally.


Author(s):  
Brian Rose ◽  
James Widrig

High temperature piping systems and associated components, elbows and bellows in particular, are vulnerable to damage from creep. The creep behavior of the system is simulated using finite element analysis (FEA). Material behavior and damage is characterized using the MPC Omega law, which captures creep embrittlement. Elbow elements provide rapid yet accurate modeling of pinching of piping, which consumes a major portion of the creep life. The simulation is used to estimate the remaining life of the piping system, evaluate the adequacy of existing bellows and spring can supports and explore remediation options.


2014 ◽  
Vol 60 (3) ◽  
pp. 323-334 ◽  
Author(s):  
G. Leonardi

Abstract The paper presents a numerical study of an aircraft wheel impacting on a flexible landing surface. The proposed 3D model simulates the behaviour of flexible runway pavement during the landing phase. This model was implemented in a finite element code in order to investigate the impact of repeated cycles of loads on pavement response. In the model, a multi-layer pavement structure was considered. In addition, the asphalt layer (HMA) was assumed to follow a viscoelastoplastic behaviour. The results demonstrate the capability of the model in predicting the permanent deformation distribution in the asphalt layer.


2016 ◽  
Vol 87 (16) ◽  
pp. 1938-1952 ◽  
Author(s):  
Chao Zhi ◽  
Hairu Long ◽  
Fengxin Sun

The aim of this research was to investigate the low-velocity impact properties of syntactic foam reinforced by warp-knitted spacer fabric (SF-WKSF). In order to discuss the effect of warp-knitted spacer fabric (WKSF) and hollow glass microballoon parameters on the impact performance of composites, eight different kinds of SF-WKSF samples were fabricated, including different WKSF surface layer structures, different spacer yarn diameters and inclination-angles, different microballoon types and contents. The low-velocity impact tests were carried out on an INSTRON 9250 HV drop-weight impact tester and the impact resistances of SF-WKSF were analyzed; it is indicated that most SF-WKSF specimens show higher peak impact force and major damage energy compared to neat syntactic foam. The results also demonstrate that the surface layer structure, inclination-angle of the spacer yarn and the volume fraction and type of microballoon have a significant influence on the low-impact performance of SF-WKSF. In addition, a finite element analysis finished with ANSYS/LS-DYNA and LS-PrePost was used to simulate the impact behaviors of SF-WKSF. The results of the finite element analysis are in agreement with the experimental results.


Ceramics ◽  
2020 ◽  
Vol 3 (2) ◽  
pp. 210-222 ◽  
Author(s):  
Guenter Unterreiter ◽  
Daniel R. Kreuzer ◽  
Bernd Lorenzoni ◽  
Hans U. Marschall ◽  
Christoph Wagner ◽  
...  

Creep behavior is very important for the selection of refractory materials. This paper presents a methodology to measure the compressive creep behavior of fired magnesia materials at elevated temperatures. The measurements were carried out at 1150–1500 °C and under compression loads from 1–8 MPa. Creep strain was calculated from the measured total strain data. The obtained creep deformations of the experimental investigations were subjected to detailed analysis to identify the Norton-Bailey creep law parameters. The modulus of elasticity was determined in advance to simplify the inverse estimation process for finding the Norton-Bailey creep parameters. In the next step; an extended material model including creep was used in a finite element analysis (FEA) and the creep testing procedure was reproduced numerically. Within the investigated temperature and load range; the creep deformations calculated by FEA demonstrated a good agreement with the results of the experimental investigations. Finally; a finite element unit cell model of a quarter brick representing a section of the lining of a ferrochrome (FeCr) electric arc furnace (direct current) was used to assess the thermo-mechanical stresses and strains including creep during a heat-up procedure. The implementation of the creep behavior into the design process led to an improved prediction of strains and stresses.


Sign in / Sign up

Export Citation Format

Share Document