Prediction of Fatigue Crack Initiation and Growth During Thermal Cycling

Author(s):  
Guiyi Wu ◽  
David Smith ◽  
David Tanner

Conventional approaches to assess fatigue under combined thermal and mechanical loading often utilize a fatigue design curve. In this paper models based on the physics and mechanics for the initiation and growth of fatigue cracks in stainless steel are first explained. The models are based on experimental evidence gathered for the initiation and growth of small cracks created during strain controlled laboratory tests. This evidence is then linked with data for the growth of large fatigue cracks in stainless steel. In the paper these models are coupled with finite element analyses to explore the fatigue initiation and growth of cracks in stainless steel pipes subjected to thermal cycling. It is assumed that the material behaviour is elastic-perfectly plastic, rate independent and fatigue occurs in air. The stress and strain fields for pipes subjected to a range of thermal loading conditions are explored. The fields are shown to be sensitive to parameters such as the Biot and Fourier numbers that include pipe dimensions, physical properties, dwell time and thermal conditions. Of particular interest is the temperature range and dwell time during thermal loading. Finite element analyses are then used to determine the stress and strain ranges created by thermal loading and these ranges are used in the crack initiation and growth models to estimate fatigue life.

Author(s):  
D. Green ◽  
R. D. Smith ◽  
J. P. Taggart ◽  
D. Beardsmore ◽  
S. Robinson

Thermal fatigue cracks have been found in austenitic pipe work in many pressurised water reactors, caused by thermal cycling due to the passage of water at different temperatures along the pipe inner surface. The rates of crack initiation and growth for this situation are not well understood because of the stochastic nature of the temperature fluctuations. Therefore, large allowances must be made when assessing the integrity of this pipe work to this failure mechanism. Improved assessment of crack initiation and growth could enable increased plant availability, and better safety cases. A programme of work has been completed consisting of fatigue tests on thick 304L butt-welded pipe specimens, and accompanying predictions of crack initiation and growth. In each test, uniform thermal cycles were generated using a water jet on a small area of the pipe. The magnitude of the cycles differed between the tests. Crack initiation and growth were monitored using a dye penetrant technique, applied to the pipe inner and outer surfaces, together with destructive examination. Crack initiation predictions were made using fatigue data derived from mechanical fatigue tests on the same material as in the pipe specimens. Good predictions were made using a strain-life endurance curve at a temperature corresponding to the average temperature of the metal surface during the thermal cycle. Crack growth predictions were based on an inelastic finite-element model accounting for cyclic hardening, and an enhanced R5 procedure (1) with crack closure taken into account. A linear elastic fracture mechanics definition of a Paris law for crack growth was used, and plastic redistribution effects were included. Predictions were good for all of the experimental scenarios carried out. A further experimental and analytical programme is in hand using the same experimental arrangements, concerning variable amplitude thermal loading.


2018 ◽  
Vol 165 ◽  
pp. 14012
Author(s):  
Tsutsumi Seiichiro ◽  
Sano Moe ◽  
Fincato Riccardo

Finite element analyses (FEA) are particularly useful for investigating fatigue problems since it is possible to carry out elasto-plastic simulations for any configuration and to predict the material behaviour for a large number of loading cycles. This study aims to investigate the fatigue life for Al-Mg alloy A5083-O joints by means of numerical simulations. The Proposed method needs to give a precise description of the elasto-plastic behaviour of the alloy together with an appropriate definition of the criteria for the fatigue crack initiation. In this paper, the elasto-plastic behaviour of the A5083-O alloy was investigated by FE analyses. On the other hand, the fatigue crack initiation criterion is provided based on strain ranges observations. In detail, the finite element analyses focused the attention on the study of the service life of a butt-weld join.


Author(s):  
Farnoosh Farhad ◽  
Xiang Zhang ◽  
David Smyth-Boyle

Corrosion pits are a form of geometrical discontinuity that lead to stress and strain concentration in engineering components, resulting in crack initiation under service loading conditions and ultimately fracture and failure. Initiation and propagation of cracks in offshore pipelines can lead to loss of containment and environmental and commercial impacts. In order to prevent such failures, tools to predict the structural integrity of pipelines need to be improved. This work investigates the fatigue behaviour of corrosion pits in API-5L X65 grade steel pipeline utilising numerical and analytical methods. Firstly, load-controlled fatigue tests were carried out on smooth X65 steel samples to establish S–N data. Secondly, local stress–strain behaviour at corrosion pits and its effect on fatigue crack initiation were investigated using elastic-plastic finite element analysis of samples containing a single corrosion pit under cyclic loading. Analysis of stabilised stress–strain hysteresis loops at corrosion pits showed that the local stress ratio at the pit changes from 0.1 to −0.4 while the applied stress amplitude increases with the same stress ratio of 0.1. Analytical methods were also used to predict the local maximum stress and strain at the pit, which showed a similar local stress ratio to the finite element analysis result but lower stress and strain ranges. Finally, fatigue crack initiation life was predicted using the combination of finite element stress and strain analysis and the Smith–Watson–Topper strain–life approach. An advantage of this method for life estimation is that this approach considers the local stress and strains at corrosion pits rather than applied stress.


2007 ◽  
Vol 353-358 ◽  
pp. 989-992
Author(s):  
Yan Hai Xu ◽  
Yong Xiang Zhao

The short fatigue crack initiation of LZ50 axle steel for railway vehicles was investigated by numerical simulation in this paper. The microstructure of LZ50 steel was constructed with the application of 2D Voronoi tessellation. The stress and strain distributions in the microstructure were obtained by FEM under the boundary condition shifted from loading level applied in fatigue specimen of this steel. Finally, the probability of short fatigue crack initiation was given with different loading cycles to illustrate the process of crack initiation of LZ50 steel under the given loading cycles based on the S-N curve of the material. The further work on the research of crack growth and collective evolution of short fatigue cracks can be conducted with the simulated results of crack initiation in the microstructure of LZ50 steel.


Materials ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 4018
Author(s):  
Shuming Zhang ◽  
Yuanming Xu ◽  
Hao Fu ◽  
Yaowei Wen ◽  
Yibing Wang ◽  
...  

From the perspective of damage mechanics, the damage parameters were introduced as the characterizing quantity of the decrease in the mechanical properties of powder superalloy material FGH96 under fatigue loading. By deriving a damage evolution equation, a fatigue life prediction model of powder superalloy containing inclusions was constructed based on damage mechanics. The specimens containing elliptical subsurface inclusions and semielliptical surface inclusions were considered. The CONTA172 and TARGE169 elements of finite element software (ANSYS) were used to simulate the interfacial debonding between the inclusions and matrix, and the interface crack initiation life was calculated. Through finite element modeling, the stress field evolution during the interface debonding was traced by simulation. Finally, the effect of the position and shape size of inclusions on interface debonding was explored.


2014 ◽  
Vol 891-892 ◽  
pp. 1711-1716 ◽  
Author(s):  
Loic Signor ◽  
Emmanuel Lacoste ◽  
Patrick Villechaise ◽  
Thomas Ghidossi ◽  
Stephan Courtin

For conventional materials with solid solution, fatigue damage is often related to microplasticity and is largely sensitive to microstructure at different scales concerning dislocations, grains and textures. The present study focuses on slip bands activity and fatigue crack initiation with special attention on the influence of the size, the morphology and the crystal orientation of grains and their neighbours. The local configurations which favour - or prevent - crack initiation are not completely identified. In this work, the identification and the analysis of several crack initiation sites are performed using Scanning Electron Microscopy and Electron Back-Scattered Diffraction. Crystal plasticity finite elements simulation is employed to evaluate local microplasticity at the scale of the grains. One of the originality of this work is the creation of 3D meshes of polycrystalline aggregates corresponding to zones where fatigue cracks have been observed. 3D data obtained by serial-sectioning are used to reconstruct actual microstructure. The role of the plastic slip activity as a driving force for fatigue crack initiation is discussed according to the comparison between experimental observations and simulations. The approach is applied to 316L type austenitic stainless steels under low-cycle fatigue loading.


Author(s):  
Pauline Bouin ◽  
Antoine Fissolo ◽  
Ce´dric Gourdin

This paper covers work carried out by the French Atomic Energy Commission (CEA) to investigate on mechanisms leading to cracking of piping as a result of thermal loading existing in flow mixing zones. The main purpose of this work is to analyse, with a new experiment and its numerical interpretation, and to understand the mechanism of propagation of cracks in such components. To address this issue, a new specimen has been developed on the basis of the Fat3D experiment. This thermal fatigue test consists in heating a 304L steel pre-cracked tube while cyclically injecting ambient water onto its inner surface. The tube is regularly removed from the furnace for a crack characterisation. Finally, the crack growth is evaluated from the crack length differences between two stops. In parallel, a finite element analysis is developed using the finite element Cast3M code. A pipe with a semi-elliptical crack on its inner surface is modelled. A cyclic thermal loading is imposed on the tube. This loading is in agreement with experimental data. The crack propagates through the thickness. A prediction of the velocity of the crack is finally assessed using a Paris’ law type criteria. Finally, this combined experimental and numerical work on 304L austenitic stainless steel pipes will enable to improve existing methods to accurately predict the crack growth under cyclic thermal loadings in austenitic stainless steel pipe at the design stage.


Sign in / Sign up

Export Citation Format

Share Document