FEM Stress Analysis and Sealing Performance of Bolted Flanged Connections Using PTFE Blended Gaskets Under Internal Pressure

Author(s):  
Koji Sato ◽  
Akira Muramatsu ◽  
Takashi Kobayashi ◽  
Toshiyuki Sawa

The objective of the paper is to examine mechanical characteristics of bolted flanged connection with newly developed PTFE blended gaskets under internal pressure such as the contact gasket stress distribution, the sealing performance, the load factor, reduction in axial bolt load due to creep and the flange hub stress. The relationship between the leak rate and the contact gasket stress for newly developed PTFE blended gasket were measured according to JIS B 2490 as well as the stress - displacement relationship of the gaskets. Then, the leak rate for bolted flanged connection with the PTFE blended gaskets (2inch nominal flange) was measured under internal pressure while changing the bolt preloads. In addition, the load factor and the hub stress were measured experimentally. The changes in each axial bolt force were measured using the strain gauges taking into account gasket creep. Using FEM, the gasket stress distribution, the load factor and the hub stress are analyzed taking into account the creep phenomenon of the PTFE blended gasket. The optimal maximum bolt preload is determined and the FEM results of the load factor and hub stress are in a fairly good agreement with the measured results. The predicted leak rate is fairly coincided with the measured results.

Author(s):  
Koji Sato ◽  
Toshiyuki Sawa ◽  
Xing Zheng

The sealing performance prediction of bolted pipe flange connections with gaskets is important factor. However, it is known that the sealing performance of the larger nominal diameter connection is worse than that with smaller nominal diameter connection due to the flange rotation. Furthermore, recently PTFE blended gaskets were developed newly and the excellent sealing performance in the bolted pipe flange connection with smaller nominal diameter is found. So, it is necessary to examine the sealing performance and the mechanical characteristics of pipe flange connections with larger nominal diameter under internal pressure. The objectives of present study are to examine the mechanical characteristics of the pipe flange connection with PTFE blended gasket under internal pressure such as the load factor, the contact gasket stress distribution and the sealing performance using FEM and experiments. Using the obtained contact gasket stress distribution and the fundamental leak rate for smaller PTFE gasket, the leak rate of the connection is predicted under internal pressure. In the FEM calculation, the effects of the nominal diameter of pip flange connections on the mechanical characteristics are shown. In the experiments, ASME class 300 24” pipe flange connections is used and the gasket is chosen as No.GF300 in PTFE blended gaskets. The FEM results of the axial bolt forces are in a fairly good agreement with the experimental results. In addition, the leak rate obtained from the FEM calculations are fairly coincided with the measured results. The mechanical characteristics of pipe flange connection with PTFE blended gasket are compared with those with spiral wound gasket.


Author(s):  
Akira Muramatsu ◽  
Koji Sato ◽  
Maksud Uddin Khan ◽  
Toshiyuki Sawa

The gasket fundamental characteristics such as the stress-strain curves of compressed sheet gaskets (CSG) and the spiral wound gaskets (SWG) and the relationship between the average gasket stress and the leak rate using rigid platens were measured. Then, using the measured data of the gasket properties, the mechanical characteristics of bolted pipe flange connections under internal pressure are examined such as the contact gasket stress distribution, hub stress and changes in axial bolt forces (the load factor) using FEM. FEM code employed is ABAQUS. Using the obtained gasket stress distributions and the fundamental gasket relationship between the gasket stress and the leak rate, the leak rates of bolted pipe flange connections are predicted. In addition, the effect of nominal diameters (from 2” to 24”) on the mechanical characteristics is examined. For verification of the FEM calculations, experiments to measure the load factor, the hub stress and the leak rates were performed using 2” and 24” bolted pipe flange connections. The FEM results of the load factor, the hub stress and the leak rate are in a fairly good agreement with the measured results. The value of the load factor is found to be positive for 2” pipe flanged joints, while it is negative for 24” pipe flanged connection due to the flange rotation. It is noticed that the values of the load factor decreases with an increase of the nominal diameter of pipe flanges. The hub stress is kept constant when the gasket stress is held constant for each connection with each nominal diameter while it increases as the nominal diameter increases according to ASME codes. In addition, the leak rate increases as the nominal diameter increases.


Author(s):  
Koji Sato ◽  
Toshiyuki Sawa ◽  
Riichi Morimoto ◽  
Takashi Kobayashi

In designing of pipe flange connections with gaskets, it is important to examine the mechanical characteristics of the connections subjected to external bending moments due to earthquake such as the changes in hub stress, axial bolt forces and the contact gasket stress distribution which governs the sealing performance. One of the authors developed the PTFE blended gaskets and the authors examined the mechanical characteristics of the connections with the PTFE blended gaskets under internal pressure. However, no research was done to examine the mechanical characteristics of the connections with the newly developed PTFE blended gasket subjected to external bending moment due to earthquake. The objectives of the present study are to examine the mechanical characteristics of the connection with PTFE blended gasket subjected to external bending moment and internal pressure and to discuss the difference in the load order to the connections between the internal pressure and the external bending moments. The changes in the hub stress, the axial bolt force and the contact gasket stress distribution of the connection are analyzed using FEM. Using the obtained the gasket stress distribution and the fundamental data between the gasket stress and the leak rate for a smaller test gasket, the leak rate of the connection with the gasket is predicted under external bending moment and internal pressure. In the FEM calculations, the effects of the nominal diameter of pipe flanges on the mechanical characteristics are shown. In the experiments, ASME class 300 4 inch flange connection with 2m pipes at both sides is used and the test gasket is chosen as No.GF300 made by Nippon Valqua Industries, ltd. Four point bending moment is applied to the connection. The FEM results of the hub stress and the axial bolt forces are in a fairly good agreement with the experimental results. In addition, the FEM results of the leak rate are fairly coincided with the measured results.


Author(s):  
Koji Kondo ◽  
Koji Sato ◽  
Satomi Takahashi ◽  
Toshiyuki Sawa

Bolted pipe flange connections with metallic gaskets have been used under higher pressure as well as higher temperature. However, a few researches on the mechanical characteristics in connections with metallic gaskets have been carried out. It is necessary to examine the mechanical characteristics such as the contact gasket stress distributions which govern the sealing performance, the deformation of the metallic gaskets, changes in axial bolt forces and the hub stress under higher pressure and temperature. In the present paper, the objectives are to examine the changes in axial bolt forces, the hub stress and the contact gasket stress distributions and the sealing performance of the pipe flange connections with metallic flat gaskets. Firstly, the mechanical characteristics of the connections under higher pressure are analyzed using FEA. Then, experiments were carried out to measure the load factor, the hub stress and the leak rate (the sealing performance). The relationship between the average contact gasket stress and the leak rate was measured using platen device at room temperature. The FEA results are fairly coincided with the experimental results. It is shown that the leak rate decreases as the contact gasket stress increases and when the plastic deformation of gaskets occurs, the sealing performance increases. The leak rate was measured in the range of 10−4∼10−7 [Pa·m3/s]. It is found that the sealing performance increases as the gasket width increase in the elastic deformation range while it is independent of the gasket width when the plastic deformation occurs. The effect of temperature on the mechanical characteristics of the connection is also examined. The FEA results are in a fairly good agreement with the experimental results. It is found that the sealing performance increases as the temperature increases. In addition, a method how to determine the bolt preload for increasing the sealing performance is proposed.


Author(s):  
Toshiyuki Sawa ◽  
Toshio Mabuchi ◽  
Koji Sato

Abstract The contact gasket stress reduces when the bolted gasketed pipe flange connections are subjected to internal pressure. In designing the bolted connections, it is needed to predict the reduced contact gasket stress, so, it is necessary to know the load factor. However, it is difficult to estimate the value of the load factor of the connections under internal pressure. In the previous paper (2018PVP), a more simpler calculation method was proposed. However, a more accuracy for obtaining the values of the load factor is desirable using the spring constants Ktg and Kcg. In the present paper, some calculation models for the spring constants are improved. Then, the values of the load factor for JIS 10K flange connections and ASME B16 flange connections with spiral wound gaskets are shown. The values of the load factor for the above connections are in a fairy good agreement with the FEM results. Using the obtained load factor, the residual contact gasket stress and an amount of gas leakage are predicted. The obtained calculated results of the load factor and the amount of the leakage are in a fairly good agreement with FEM results, and the measured results for 24” connection. As a result, the value of the load factor for the connections with larger nominal diameter is found to be negative and it decreases as the nominal flange diameter increases. In addition, a method how to determine the bolt preload for satisfying a give allowable leak rate is demonstrated.


Author(s):  
Koji Sato ◽  
Toshiyuki Sawa ◽  
Takashi Kobayashi

Mechanical characteristics of bolted pipe flange connections with PTFE blended gaskets under elevated temperature are examined using FEM calculations and experiments. Firstly, the basic characteristics of the PTFE blended gaskets are measured such as the stress-strain curves, the thermal expansion coefficient and the relationship between the contact gasket stress and the leak rate at room temperature and some high temperature. The leak rates of the gasket at the averaged gasket stress are measured using the rigid platen. In addition, the creep characteristics of the gaskets are measured using the rigid platen under elevated temperature. Then, using the gasket basic characteristics measured above, the FEM calculations are carried out to analyze the mechanical characteristics such as 1) changes in axial bolt forces (the load factor), 2) the contact gasket stress distributions, 3) flange hub stress. Then, the sealing performance of bolted pipe flange connections is predicted using the contact gasket stress distributions obtained from the FEM calculations and the relationship between the gasket stress and the leak rate. In the FEM calculations, the value of the load factor due to the internal pressure is obtained as φg = 0.12. Furthermore, the sealing performance in long-term is estimated using the change in the axial bolt forces (creep) and the contact gasket stress distributions under heat cycle and internal pressure. For verification of the FEM calculations, the experiments were performed to measure the load factor (change in axial bolt forces), the leak rate of the connection at each temperature, and the hub stress. The FEM results are in a fairly good agreement with the measured results. In addition, the reduction in the contact gasket stress due to the heat cycle, internal pressure and the creep is demonstrated and the effect of the nominal diameter of pipe flanges on the sealing performance is shown.


Author(s):  
Yuya Omiya ◽  
Toshiyuki Sawa ◽  
Yoshio Takagi

In the present paper, the gasket stress distributions, hub stress and a variation in axial bolt force in bolted gasketed pipe flange connections under internal pressure are analyzed using elasto-plastic FEM taking into account the nonlinearity of gasket behavior. Non-asbestos spiral wound gaskets were employed. The effect of nominal flange diameter is examined on the gasket contact stress distributions, the hub stress and the variation in axial bolt force (the load factor) is examined. Using the obtained gasket contact stress distribution and the fundamental data of the relationship between gasket compressive stress and gasket leak rate according to JIS B 2490, a method for predicting the leak rate is demonstrated. Experiments to measure the amount of leakage, the hub stress and the variation in axial bolt force when the joint is under internal pressure were carried out. The numerical results of the leak rate, hub stress and the load factor are in a fairly good agreement with the measured results. Then, a method is demonstrated for determining the bolt preload under given conditions, that is, taking into account assembly efficiency, leak rate and internal pressure In addition, bolt preload is determined using the actual gasket contact stress which can be estimated using the value of the load factor. As a design example, the procedure for determining the bolt preload in 3″ and 20″ nominal diameter pipe flange connections is shown for the allowable leak rate of 1.0−3Pa • m3/s. The results are validated by the experiments.


Author(s):  
Koji Kondo ◽  
Shota Tsubaki ◽  
Toshiyuki Sawa ◽  
Tsutomu Kikuchi ◽  
Yuya Omiya

Bolted flange connections with ring joint gaskets have been used to seal the inner fluid under higher internal pressure and higher temperature conditions where soft gaskets such as compressed sheet gaskets cannot be applied. Bolted flange connections are frequently tightened using torque wrench, and it is known that the values of bolt preloads are scattered. The effect of the scatter on the sealing performance for bolted flange connections with compressed sheet gasket or semi-metal gasket has been examined. However, no research on the characteristics for the bolted flange connections with ring joint gasket has been found. It is necessary to know the effect of the scattered bolt preloads on the sealing performance and mechanical behavior of the connection with ring joint gasket. In addition, it is important to know an optimum method for determining the bolt preloads taking account of the scatter in bolt preloads. In this paper, leakage tests for bolted flange connections with octagonal ring joint gaskets were conducted for cases where the bolt preloads are uniform and scattered. The sealing performance of these connections with ring joint gaskets was measured and evaluated. In addition, the leak rate was estimated using the contact gasket stress distributions of the connections when the bolt preloads were uniform and scattered using 3-D FEM. Finally, the measured leak rate for the connection using helium gas was compared with the estimated results. The estimated results are in fairly good agreement with the measured values. It is found that the sealing performance of the connections tightened with the uniform bolt methods is better than that with scattered bolt preloads.


2000 ◽  
Author(s):  
Toshiyuki Sawa ◽  
Tsuneshi Morohoshi ◽  
Akihiro Shimizu

Abstract In designing bolted joints, it is important to know the contact stress distribution which governs the clamping effect or the sealing performance and to estimate the load factor (the ratio of an increment in axial bolt force to an external load) from bolt design standpoint. The clamping force by bolts and the external bending moment are axi-asymmetrical loads and not many investigations have seen reported which treat axi-asymmetrical. In this paper, the clamping effect, and the load factor for the case of solid round bars with circular flanges, subjected to external bending moments, are analyzed as an axi-asymmetrical problem using the three-dimensional theory of elasticity. Experiments were carried out concerning the contact stress distribution, and the load factor for the external bending moment (a relationship between an increment in axial bolt force, and external bending moment). The analytical results were in fairly good agreement with the experimental ones.


Author(s):  
Satoshi Nagata ◽  
Toshiyuki Sawa

This paper deals with the behavior of a gasketed flange connection with a cover plate subjected to internal pressure. A calculation method to obtain the bolt force and the gasket reaction changes due to internal pressure using a load factor is introduced and the equations to obtain the load factor for the gasketed flange connection with cover plate using a simplified model are shown. By using 3 inch flange connection with cover plate a spiral gasket inserted, an experimental test is carried out and bolt force changes are measured due to internal pressure. The changes of the bolt force and the gasket reaction due to internal pressure are estimated by the load factor based calculation. Finite element analysis is also performed. The calculation results and the experimental ones are compared one another. It is demonstrated that the calculated bolt force change shows fairly good agreement with the experimental test results. This shows the proposed method may be applicable for the design calculation considering the sealing performance of the connection. When the required gasket stress is given to achieve the target tightness in the operating condition, the appropriate initial bolt preload can be determined by using the proposed method.


Sign in / Sign up

Export Citation Format

Share Document