Stress Analysis and Design of Bolted Flange Connections Under Internal Pressure

Author(s):  
Yuya Omiya ◽  
Toshiyuki Sawa ◽  
Yoshio Takagi

In the present paper, the gasket stress distributions, hub stress and a variation in axial bolt force in bolted gasketed pipe flange connections under internal pressure are analyzed using elasto-plastic FEM taking into account the nonlinearity of gasket behavior. Non-asbestos spiral wound gaskets were employed. The effect of nominal flange diameter is examined on the gasket contact stress distributions, the hub stress and the variation in axial bolt force (the load factor) is examined. Using the obtained gasket contact stress distribution and the fundamental data of the relationship between gasket compressive stress and gasket leak rate according to JIS B 2490, a method for predicting the leak rate is demonstrated. Experiments to measure the amount of leakage, the hub stress and the variation in axial bolt force when the joint is under internal pressure were carried out. The numerical results of the leak rate, hub stress and the load factor are in a fairly good agreement with the measured results. Then, a method is demonstrated for determining the bolt preload under given conditions, that is, taking into account assembly efficiency, leak rate and internal pressure In addition, bolt preload is determined using the actual gasket contact stress which can be estimated using the value of the load factor. As a design example, the procedure for determining the bolt preload in 3″ and 20″ nominal diameter pipe flange connections is shown for the allowable leak rate of 1.0−3Pa • m3/s. The results are validated by the experiments.

Author(s):  
Koji Kondo ◽  
Yuya Omiya ◽  
Shota Tsubaki ◽  
Toshiyuki Sawa

Bolted flange connections with metal gasket have been used at higher pressure under higher temperature condition. Assembly procedures and tightening methods the connections including some types of metal gasket is empirically. Generally, it is known that the bolt preload which is required for satisfying an indicated leak rate in the connections including the metal gasket is not higher than that of the connections including sheet gaskets and spiral wound gaskets. However, no research for the evaluating the sealing performance in the bolted flange connections with metal gaskets has been conducted. In this paper, the leakage tests for the bolted flange connections with the metal flat gasket were conducted in the case where the maximum internal pressure of 7MPa and a bending moment are applied, where the leak rate is measured using the pressure drop method. Then, the sealing performance of the connections with the metal flat gasket was evaluated. In addition, using the FEM stress calculations, the flange stress distributions between the flange surface and the gasket were examined as the evaluation. As the result, it is found that the stress distribution at the contact surfaces between the metal flat gasket and the flange surface under the bending moment and the internal pressure. In the leakage tests, it was observed that the amount of the leakage (He gas) depends on the stress distributions and the plastic deformation of the gasket.


Author(s):  
Akira Muramatsu ◽  
Koji Sato ◽  
Maksud Uddin Khan ◽  
Toshiyuki Sawa

The gasket fundamental characteristics such as the stress-strain curves of compressed sheet gaskets (CSG) and the spiral wound gaskets (SWG) and the relationship between the average gasket stress and the leak rate using rigid platens were measured. Then, using the measured data of the gasket properties, the mechanical characteristics of bolted pipe flange connections under internal pressure are examined such as the contact gasket stress distribution, hub stress and changes in axial bolt forces (the load factor) using FEM. FEM code employed is ABAQUS. Using the obtained gasket stress distributions and the fundamental gasket relationship between the gasket stress and the leak rate, the leak rates of bolted pipe flange connections are predicted. In addition, the effect of nominal diameters (from 2” to 24”) on the mechanical characteristics is examined. For verification of the FEM calculations, experiments to measure the load factor, the hub stress and the leak rates were performed using 2” and 24” bolted pipe flange connections. The FEM results of the load factor, the hub stress and the leak rate are in a fairly good agreement with the measured results. The value of the load factor is found to be positive for 2” pipe flanged joints, while it is negative for 24” pipe flanged connection due to the flange rotation. It is noticed that the values of the load factor decreases with an increase of the nominal diameter of pipe flanges. The hub stress is kept constant when the gasket stress is held constant for each connection with each nominal diameter while it increases as the nominal diameter increases according to ASME codes. In addition, the leak rate increases as the nominal diameter increases.


Author(s):  
Koji Sato ◽  
Toshiyuki Sawa ◽  
Takashi Kobayashi

Mechanical characteristics of bolted pipe flange connections with PTFE blended gaskets under elevated temperature are examined using FEM calculations and experiments. Firstly, the basic characteristics of the PTFE blended gaskets are measured such as the stress-strain curves, the thermal expansion coefficient and the relationship between the contact gasket stress and the leak rate at room temperature and some high temperature. The leak rates of the gasket at the averaged gasket stress are measured using the rigid platen. In addition, the creep characteristics of the gaskets are measured using the rigid platen under elevated temperature. Then, using the gasket basic characteristics measured above, the FEM calculations are carried out to analyze the mechanical characteristics such as 1) changes in axial bolt forces (the load factor), 2) the contact gasket stress distributions, 3) flange hub stress. Then, the sealing performance of bolted pipe flange connections is predicted using the contact gasket stress distributions obtained from the FEM calculations and the relationship between the gasket stress and the leak rate. In the FEM calculations, the value of the load factor due to the internal pressure is obtained as φg = 0.12. Furthermore, the sealing performance in long-term is estimated using the change in the axial bolt forces (creep) and the contact gasket stress distributions under heat cycle and internal pressure. For verification of the FEM calculations, the experiments were performed to measure the load factor (change in axial bolt forces), the leak rate of the connection at each temperature, and the hub stress. The FEM results are in a fairly good agreement with the measured results. In addition, the reduction in the contact gasket stress due to the heat cycle, internal pressure and the creep is demonstrated and the effect of the nominal diameter of pipe flanges on the sealing performance is shown.


Author(s):  
Koji Sato ◽  
Akira Muramatsu ◽  
Takashi Kobayashi ◽  
Toshiyuki Sawa

The objective of the paper is to examine mechanical characteristics of bolted flanged connection with newly developed PTFE blended gaskets under internal pressure such as the contact gasket stress distribution, the sealing performance, the load factor, reduction in axial bolt load due to creep and the flange hub stress. The relationship between the leak rate and the contact gasket stress for newly developed PTFE blended gasket were measured according to JIS B 2490 as well as the stress - displacement relationship of the gaskets. Then, the leak rate for bolted flanged connection with the PTFE blended gaskets (2inch nominal flange) was measured under internal pressure while changing the bolt preloads. In addition, the load factor and the hub stress were measured experimentally. The changes in each axial bolt force were measured using the strain gauges taking into account gasket creep. Using FEM, the gasket stress distribution, the load factor and the hub stress are analyzed taking into account the creep phenomenon of the PTFE blended gasket. The optimal maximum bolt preload is determined and the FEM results of the load factor and hub stress are in a fairly good agreement with the measured results. The predicted leak rate is fairly coincided with the measured results.


Author(s):  
Koji Kondo ◽  
Koji Sato ◽  
Satomi Takahashi ◽  
Toshiyuki Sawa

Bolted pipe flange connections with metallic gaskets have been used under higher pressure as well as higher temperature. However, a few researches on the mechanical characteristics in connections with metallic gaskets have been carried out. It is necessary to examine the mechanical characteristics such as the contact gasket stress distributions which govern the sealing performance, the deformation of the metallic gaskets, changes in axial bolt forces and the hub stress under higher pressure and temperature. In the present paper, the objectives are to examine the changes in axial bolt forces, the hub stress and the contact gasket stress distributions and the sealing performance of the pipe flange connections with metallic flat gaskets. Firstly, the mechanical characteristics of the connections under higher pressure are analyzed using FEA. Then, experiments were carried out to measure the load factor, the hub stress and the leak rate (the sealing performance). The relationship between the average contact gasket stress and the leak rate was measured using platen device at room temperature. The FEA results are fairly coincided with the experimental results. It is shown that the leak rate decreases as the contact gasket stress increases and when the plastic deformation of gaskets occurs, the sealing performance increases. The leak rate was measured in the range of 10−4∼10−7 [Pa·m3/s]. It is found that the sealing performance increases as the gasket width increase in the elastic deformation range while it is independent of the gasket width when the plastic deformation occurs. The effect of temperature on the mechanical characteristics of the connection is also examined. The FEA results are in a fairly good agreement with the experimental results. It is found that the sealing performance increases as the temperature increases. In addition, a method how to determine the bolt preload for increasing the sealing performance is proposed.


Author(s):  
Toshiyuki Sawa ◽  
Satoshi Nagata ◽  
Naofumi Ogata

This paper deals with the stress analysis of a pipe flange connection with a spiral wound gasket using the elasto-plastic finite element method taking account the hysteresis and the non-linearity in the stress-strain curve of the spiral wound gasket, when an internal pressure is applied to the pipe flange connections with the different nominal diameters from 2 to 20. The effects of the nominal diameter of the pipe flange on the contact stress distributions at the interfaces are examined. Leakage tests of the pipe flange connections with 3 and 20 nominal diameters were conducted and measurement of the axial bolt force was also performed. The results by the finite element analysis are fairly consistent with the experimental results concerning the variation in the axial bolt force. By using the contact stress distributions and the results of the leakage test, the new gasket constants are evaluated. As a result, it is found that the variations in the contact stress distributions are substantial due to the flange rotation in the pipe flange connections with the larger nominal diameter. In addition, a method to determine the bolt preload for a given tightness parameter is demonstrated.


Author(s):  
Koji Kondo ◽  
Shota Tsubaki ◽  
Toshiyuki Sawa ◽  
Tsutomu Kikuchi ◽  
Yuya Omiya

Bolted flange connections with ring joint gaskets have been used to seal the inner fluid under higher internal pressure and higher temperature conditions where soft gaskets such as compressed sheet gaskets cannot be applied. Bolted flange connections are frequently tightened using torque wrench, and it is known that the values of bolt preloads are scattered. The effect of the scatter on the sealing performance for bolted flange connections with compressed sheet gasket or semi-metal gasket has been examined. However, no research on the characteristics for the bolted flange connections with ring joint gasket has been found. It is necessary to know the effect of the scattered bolt preloads on the sealing performance and mechanical behavior of the connection with ring joint gasket. In addition, it is important to know an optimum method for determining the bolt preloads taking account of the scatter in bolt preloads. In this paper, leakage tests for bolted flange connections with octagonal ring joint gaskets were conducted for cases where the bolt preloads are uniform and scattered. The sealing performance of these connections with ring joint gaskets was measured and evaluated. In addition, the leak rate was estimated using the contact gasket stress distributions of the connections when the bolt preloads were uniform and scattered using 3-D FEM. Finally, the measured leak rate for the connection using helium gas was compared with the estimated results. The estimated results are in fairly good agreement with the measured values. It is found that the sealing performance of the connections tightened with the uniform bolt methods is better than that with scattered bolt preloads.


Author(s):  
Toshiyuki Sawa ◽  
Rie Higuchi

The stresses of a bolted flange connection with a cover of pressure vessel (CPV) in which a spiral wound gasket is inserted, under internal pressure are analyzed taking account a hysteresis of the gasket by using the finite element method (FEM). The leakage tests were also conducted using an actual bolted flange connection with a CPV with a spiral wound gasket. Using the contact stress distribution of the bolted flange connection with a CPV under internal pressure and the tightness parameter, the values of the new gasket constants were obtained by taking into account the changes in the contact stress. A difference in the new gasket constants between the estimated values obtained from the actual bolted flange connection with a CPV and the values obtained by the PVRC procedure was small. In addition, a method to determine the bolt preload for a given tightness parameter was demonstrated. The obtained results of the bolt preload for the bolted flange connection with a CPV were in a fairly good agreement with those obtained by the PVRC procedure under a lower pressure application. However, a difference in the bolt preload was about 7% when the internal pressure was increased.


Author(s):  
Toshiyuki Sawa ◽  
Takashi Kobayashi ◽  
Hirokazu Tsuji ◽  
Satoshi Nagata

This paper deals with the stress analysis of a pipe flange connection with a spiral wound gasket using the elasto-plastic finite element method when an internal pressure is applied to the pipe flange connections with the different nominal diameters from 2″ to 20″. The effects of the nominal diameter of the pipe flange on the contact stress distributions at the interfaces and the hub stress are examined. Leakage tests of the pipe flange connections with 3″ and 20″ nominal diameters were conducted and measurement of the axial bolt force was also performed. The results by the finite element analysis are fairly consistent with the experimental results concerning the variation in the axial bolt force (Load factor). By using the contact stress distributions and the results of the leakage test, the modified gasket constants are proposed and compared with PVRC values. As a result, it is found that the variations in the contact stress distributions are substantial due to the flange rotation in the pipe flange connections with the larger nominal diameter. The hub stress has been overestimated by ASME method. In addition, a method to determine the bolt preload for a given tightness parameter and a rational design method for pipe flange connections are demonstrated.


Author(s):  
Toshiyuki Sawa ◽  
Koji Sato

In designing bolted pipe flange connections with gaskets, It is necessary to know the actual residual gasket contact stress in the connections under internal pressure. However, the actual reduced gasket stress in the connection has not been sufficiently estimated. In estimating the actual residual contact gasket stress more precisely, it is needed to know the load factor (the ratio of an increment in axial bolt force to the axial force due to the internal pressure per bolt) of the connections with gaskets. The new formula for obtaining the load factor was proposed by one of the authors using the tensile spring constant Ktg and the compressive spring constant Kcg, while the spring constant of bolt-nut system is designated as Kt. In the present paper, for estimating the load factor of the connections with gaskets, the circular plate theory is applied for obtaining the values of Kcg and Ktg and then the load factor is obtained for pipe flanges specified JIS 10K flanges and ASME B 16.5 flanges. The obtained results are in a fairly good agreement with the FEM results. Using the obtained load factor for the connections, a design method is demonstrated taking account of the allowable leak rate. Using the residual contact gasket stress and the fundamental gasket leak rate, an amount of gas leakage is predicted. The predicted amount of gas leakage for 3” and 20” pipe flange connections is fairly coincided with the experimental results and the FEM results. In addition, a design method for determining the bolt preload for a give allowable real rate is demonstrated using the simple method for obtaining the load factor.


Sign in / Sign up

Export Citation Format

Share Document