The OECD-NEA Programme on Metallic Component Margins Under High Seismic Loads (MECOS): Towards New Criteria

Author(s):  
Pierre Sollogoub

MECOS is a Post-Fukushima OECD/NEA initiative, with the following main objectives: • To quantify the existing margins in seismic analysis of safety class components and assess the existing design practices within a benchmark activity. • To make proposals for new design/evaluation criteria of pressurized piping systems, accounting for their actual failure mode under strong input motions. The first part of MECOS consisted of gathering information on i) current design practices and ii) dynamic seismic tests on piping system carried out around the world that could be suitable for benchmarking. Part 2 is a benchmark exercise on piping system tests, and Part 3 are proposals for new criteria. The purpose of the proposed paper is to introduce the work which is undertaken in Part 3 in order to propose design criteria that address the observed fatigue-ratchetting failure modes as well as plastic instability. It includes revisiting the past test results as well as the interpretations that were carried out and conclusions that were drawn at that time, and reanalyzing them in the light of recent developments. Recent experimental programs carried out in Japan and in India will also be addressed.

Author(s):  
Pierre B. Labbé ◽  
G. R. Reddy ◽  
Cedric Mathon ◽  
François Moreau ◽  
Spyros A. Karamanos

MECOS is Post-Fukushima OECD/NEA initiative, with the following main objectives: - To quantify the existing margins in seismic analysis of safety class components and assess the existing design practices within a benchmark activity. - To make proposals for new design/evaluation criteria of pressurized piping systems, accounting for their actual failure mode under strong input motions. The first part of MECOS consisted of gathering information on i) current design practices and ii) piping system experimentation carried out around the world that could be suitable for benchmarking. Part 2 is the benchmark itself and Part 3 proposals for new criteria. The purpose of the proposed paper is to present the experimental background and the benchmark exercise.


2010 ◽  
Vol 132 (3) ◽  
Author(s):  
Izumi Nakamura ◽  
Akihito Otani ◽  
Masaki Shiratori

Pressurized piping systems used for an extended period may develop degradations such as wall thinning or cracks due to aging. It is important to estimate the effects of degradation on the dynamic behavior and to ascertain the failure modes and remaining strength of the piping systems with degradation through experiments and analyses to ensure the seismic safety of degraded piping systems under destructive seismic events. In order to investigate the influence of degradation on the dynamic behavior and failure modes of piping systems with local wall thinning, shake table tests using 3D piping system models were conducted. About 50% full circumferential wall thinning at elbows was considered in the test. Three types of models were used in the shake table tests. The difference of the models was the applied bending direction to the thinned-wall elbow. The bending direction considered in the tests was either of the in-plane bending, out-of-plane bending, or mixed bending of the in-plane and out-of-plane. These models were excited under the same input acceleration until failure occurred. Through these tests, the vibration characteristic and failure modes of the piping models with wall thinning under seismic load were obtained. The test results showed that the out-of-plane bending is not significant for a sound elbow, but should be considered for a thinned-wall elbow, because the life of the piping models with wall thinning subjected to out-of-plane bending may reduce significantly.


Author(s):  
Satoshi Tsunoi ◽  
Akira Mikami ◽  
Izumi Nakamura ◽  
Akihito Otani ◽  
Masaki Shiratori

The authors have proposed an analytical model by which they can simulate the dynamic and failure behaviors of piping systems with local wall thinning against seismic loadings. In the previous paper [13], the authors have carried out a series of experimental investigations about dynamic and failure behaviors of the piping system with fully circumferential 50% wall thinning at an elbow or two elbows. In this paper these experiments have been simulated by using the above proposed analytical model and investigated to what extent they can catch the experimental behaviors by simulations.


Author(s):  
Claude Faidy

During the past 30 years the main rules to design pressure vessels were based on elastic analyses. Many conservatisms associated to these different elastic approaches are discussed in this paper, like: stress criteria linearization for 3-D components, stress classification in nozzle areas, plastic shake down analysis, fatigue analysis, Ke evaluation, and pipe stress criteria for elastic follow-up due to thermal expansion or seismic loads... This paper will improve existing codified rules in nuclear and non-nuclear Codes that are proposed as alternatives to elastic evaluation for different failure modes and degradation mechanisms: plastic collapse, plastic instability, tri-axial local failure, rupture of cracked component, fatigue and Ke, plastic shakedown. These methods are based on limit loads, monotonic or cyclic elastic-plastic analyses. Concerned components are mainly vessels and piping systems. No existing Code is sufficiently detailed to be easily applied; the needs are stress analysis methods through finite elements, material properties including material constitutive equations and criteria associated to each methods and each failure modes. A first set of recommendation to perform these inelastic analysis will be presented to improve existing codes on an international harmonized way, associated to all material properties and criteria needed to apply these modern methods. An international draft Code Case is in preparation.


Author(s):  
Izumi Nakamura ◽  
Akihito Otani ◽  
Masaki Shiratori

In order to investigate the influence of degradation on the dynamic behavior and failure modes of piping systems with local wall thinning, shake table tests using 3-D piping system models were conducted. About 50% full circumferential wall thinning at elbows was considered in the test. Three types of models were used in the shake table tests. The difference of the models was the applied bending direction to the thinned wall elbow. The bending direction considered in the tests was either of the in-plane bending, out-of-plane bending, or mixed bending of the in-plane and out-of-plane. These models were excited under the same input acceleration until failure occurred. Through these tests, the vibration characteristic and failure modes of piping models with wall thinning under seismic load were obtained. The test results showed that the out-of-plane bending is not significant for a sound elbow, but should be considered for a thinned wall elbow, because the life of piping models with wall thinning subjected to out-of-plane bending may reduce significantly.


Author(s):  
Fabrizio Paolacci ◽  
Md. Shahin Reza ◽  
Oreste S. Bursi ◽  
Arnold M. Gresnigt ◽  
Anil Kumar

A significant number of damages in piping systems and components during recent seismic events have been reported in literature which calls for a proper seismic design of these structures. Nevertheless, there exists an inadequacy of proper seismic analysis and design rules for a piping system and its components. Current seismic design Codes are found to be over conservative and some components, e.g., bolted flange joints, do not have guidelines for their seismic design. Along this line, this paper discusses about the main issues on the seismic analysis and design of industrial piping systems and components. Initially, seismic analysis and component design of refinery piping systems are described. A review of current design approaches suggested by European (EN13480:3) and American (ASME B31.3) Codes is performed through a Case Study on a piping system. Some limits of available Codes are identified and a number of critical aspects of the problem e.g., dynamic interaction between pipes and rack, correct definition of the response factor and strain versus stress approach, are illustrated. Finally, seismic performance of bolted flange joints based on the results of experimental investigations carried out by the University of Trento, Italy, will be discussed.


Author(s):  
Zhen-Yu Lin ◽  
Fan-Ru Lin ◽  
Juin-Fu Chai ◽  
Kuo-Chun Chang

Based on the issue of life safety and immediate needs of emergency medical services provided by hospitals after strong earthquakes, this paper aims to introduce a research programme on assessment and improvement strategies for a typical configuration of sprinkler piping systems in hospitals. The study involved component tests and subsystem tests. Cyclic loading tests were conducted to investigate the inelastic behaviour of components including concrete anchorages, screwed fittings of small-bore pipes and couplings. Parts of a horizontal piping system of a seismic damaged sprinkler piping system were tested using shaking table tests. Furthermore, horizontal piping subsystems with seismic resistant devices such as braces, flexible pipes and couplings were also tested. The test results showed that the main cause of damage was the poor capacity of a screwed fitting of the small-bore tee branch. The optimum improvement strategy to achieve a higher nonstructural performance level for the horizontal piping subsystem is to strengthen the main pipe with braces and decrease moment demands on the tee branch by the use of flexible pipes. The hysteresis loops and failure modes of components were further discussed and will be used to conduct numerical analysis of sprinkler piping systems in future studies.


Author(s):  
Oreste S. Bursi ◽  
Fabrizio Paolacci ◽  
Md Shahin Reza

The prevailing lack of proper and uniform seismic design guidelines for piping systems impels designers to follow standards conceived for other structures, such as buildings. The modern performance-based design approach is yet to be widely adopted for piping systems, while the allowable stress design method is still the customary practice. This paper presents a performance-based seismic analysis of petrochemical piping systems coupled with support structures through a case study. We start with a concept of performance-based analysis, followed by establishing a link between limit states and earthquake levels, exemplifying Eurocode and Italian prescriptions. A brief critical review on seismic design criteria of piping, including interactions between piping and support, is offered thereafter. Finally, to illustrate actual applications of the performance-based analysis, non-linear analyses on a realistic petrochemical piping system is performed to assess its seismic performance.


Author(s):  
Jinsuo Nie ◽  
Giuliano DeGrassi ◽  
Charles H. Hofmayer ◽  
Syed A. Ali

The Japan Nuclear Energy Safety Organization/Nuclear Power Engineering Corporation (JNES/NUPEC) large-scale piping test program has provided valuable new test data on high level seismic elasto-plastic behavior and failure modes for typical nuclear power plant piping systems. The component and piping system tests demonstrated the strain ratcheting behavior that is expected to occur when a pressurized pipe is subjected to cyclic seismic loading. Under a collaboration agreement between the U.S. and Japan on seismic issues, the U.S. Nuclear Regulatory Commission (NRC)/ Brookhaven National Laboratory (BNL) performed a correlation analysis of the large-scale piping system tests using detailed state-of-the-art nonlinear finite element models. Techniques are introduced to develop material models that can closely match the test data. The shaking table motions are examined. The analytical results are assessed in terms of the overall system responses and the strain ratcheting behavior at an elbow. The paper concludes with the insights about the accuracy of the analytical methods for use in performance assessments of highly nonlinear piping systems under large seismic motions.


Author(s):  
Abhinav Gupta

This paper presents results from some of the recent studies on seismic analysis of multiply supported piping systems. The seismic responses for an actual feedwater piping system as evaluated from the conventional uncoupled analysis are compared with those obtained from an analysis of the coupled building-piping system. A discussion is also presented on the significance of non-classical damping in such analyses. It is illustrated that the composite modal damping is just another form of classical damping. Consideration of composite modal damping in a coupled analysis can give inaccurate piping responses when the modes of uncoupled systems are nearly tuned. In such systems, the effect of nonclassical damping is quite significant. Since the floor spectra are neither generated nor required in a coupled systems analysis, methods like peak broadening or peak shifting cannot be used directly to account for the effect of uncertainties. Formulations are presented to evaluate the design response from a coupled system analysis by considering the effect of uncertainties in modal properties of uncoupled systems.


Sign in / Sign up

Export Citation Format

Share Document