Sufficiency of Reference Stress Solutions for FFS Evaluation of Crack-Like Flaws

Author(s):  
Kenji Oyamada ◽  
Naoki Miura

In Japan, a new standard of an assessment procedure for crack-like flaws in pressure equipment at elevated temperature is now under development in the High Pressure Institute of Japan (HPI). In this standard development, it is needed to adopt reference stress solutions for crack-like flaws in pressure equipment being subjected to membrane stress and/or bending stress. Such reference stress solutions have been proposed in various references such as ASME FFS-1/API579-1, BS7910, R5, FBR draft guideline, HPIS Z101-2, etc. A comparative study of those reference stress solutions was conducted in order to select appropriate one. As a result, reference stress solutions in HPIS Z101-2 were adopted. The sufficiency of adopted reference stress solutions was introduced in this paper. Also, the reference stress solutions for axially and circumferentially through-wall rectangular flawed cylinders, which were not provided in the HPIS Z101-2 standard but were utilized to derive those solutions adopted in the standard, were introduced in this paper. These solutions should be adopted in a new HPI standard for crack-like flaws in pressure equipment at elevated temperature.

LWT ◽  
2020 ◽  
Vol 127 ◽  
pp. 109395
Author(s):  
Xu Wang ◽  
Xinyu Zhai ◽  
Haoran Zhang ◽  
Xiaoyu Zhang ◽  
Difeng Ren ◽  
...  

1993 ◽  
Vol 45 (1) ◽  
pp. 19-24 ◽  
Author(s):  
Jukka Vainionpää ◽  
Pirkko Forssell ◽  
Teija Virtanen

Author(s):  
Takayasu Tahara

Pressure equipment in refinery and petrochemical industries in Japan has been getting old, mostly more than 30 years in operation. Currently, the Japanese regulations for pressure equipment in service are the same as those in existence during the fabrication of the pressure equipment. Accordingly, there is an immediate need for an up to date more advanced “Fitness For Service” (FFS) evaluation requirements for pressure equipment. In order to introduce the latest FFS methodologies to Japanese industries, the High Pressure Institute of Japan (HPI) has organized two task groups. One is a working group for development of a maintenance standard for non-nuclear industries. Its prescribed code “Assessment procedure for crack-like flaws in pressure equipment” is for conducting quantitative safety evaluations of flaws detected in common pressure equipment such as pressure vessels, piping, storage tanks. The other is a special task group to study of API RP579 from its drafting stage as a member of TG579. The FFS Handbook, especially for refinery and petrochemical industries, has been developed based on API RP579 with several modifications to meet Japanese pressure vessel regulations on April 2001. [1] It is expected that both the Standard and FFS handbook will be used as an exemplified standard with Japanese regulations for practical maintenance. This paper presents concepts of “Assessment procedure for crack-like flaws in pressure equipment” HPIS Z101, 2001 [2].


2010 ◽  
Vol 11 (1) ◽  
pp. 91-97 ◽  
Author(s):  
Shuang Niu ◽  
Zenghui Xu ◽  
Yudan Fang ◽  
Liyun Zhang ◽  
Yingjie Yang ◽  
...  

2010 ◽  
Vol 24 (24) ◽  
pp. 4851-4859
Author(s):  
KAIHUA HE ◽  
GUANG ZHENG ◽  
GANG CHEN ◽  
QILI CHEN ◽  
MIAO WAN ◽  
...  

The structural and electronic properties of BN(5, 5) and C(5, 5) nanotubes under pressure are studied by using first principles calculations. In our study range, BN(5, 5) undergoes obvious elliptical distortion, while for C(5, 5) the cross section first becomes an ellipse and then, under further pressure, is flattened. The band gap of BN(5, 5) decreases with increasing pressure, which is inverse to that of zinc blende BN, whereas for C(5, 5) the metallicity is always preserved under high pressure. The population of charge density indicates that intertube bonding is formed under pressure. We also find that BN(5, 5) may collapse, and a new polymer material based on C(5, 5) is formed by applying pressure.


2009 ◽  
Vol 131 (3) ◽  
Author(s):  
Shinji Konosu

Assessment of multiple volumetric flaws is one of the most common problems relating to pressure vessels and piping components. Under the current fitness for service rules, such as ASME, BS, and so on, multiple volumetric flaws are usually recharacterized as an enveloping volumetric flaw (defined as a single larger volumetric flaw) as well as multiple cracklike flaws, following their assessment rules. However, the rules proposed in their codes will not often agree and their justification is unknown. Furthermore, they can provide unrealistic assessment in some cases. In this paper, the interaction between two differently sized nonaligned volumetric flaws such as local thin areas is clarified by applying the body force method. Unlike multiple cracklike flaws, the effect of biaxial stresses on the interaction is evident. Based on the interaction that indicates the magnification and shielding effects and reference stress solutions, a new procedure for multiple volumetric flaws is proposed for assessing the flaws in the p-M (pressure-moment) diagram, which is a simple assessment procedure for vessels with volumetric flaws.


Sign in / Sign up

Export Citation Format

Share Document