Penetration of Hydrogen Into Alpha-Fe: A Molecular Dynamics Study

Author(s):  
Xiongying Li ◽  
Tiancheng Cui ◽  
Yongzhi Zhao ◽  
Jinyang Zheng ◽  
Ping Xu

Understanding of hydrogen penetration into α-Fe plays an important role in revealing the mechanism of hydrogen embrittlement in Fe-based alloys. This work aims to investigate the penetration process of hydrogen into α-Fe by molecular dynamics simulation method, including how hydrogen changes from molecular to atomic form and how hydrogen atoms enter into the sub-surface. Potential energy difference and atom density are calculated to describe the characteristics of H-Fe interactions and to analysis the invasion process. The simulation results provide an atomic-scale insight into the hydrogen invasion process.

2019 ◽  
Vol 804 ◽  
pp. 7-10
Author(s):  
Guo Bin Zheng ◽  
Hideaki Sano ◽  
Osamu Nakagoe ◽  
Shuji Tanabe

The purpose of incorporating CNTs into ceramic materials is to enhance the toughness of ceramic materials, in which the interface plays a key role. Due to the nanoscale of nanocomposites, however, it is not easy to acquire a direct knowledge of the interface behavior. In this research, we simulated the dynamics of CNT/SiC and branched CNT/SiC under uniaxial tensile stress using molecular dynamics method (LAMMPS). The simulation method using molecular dynamics provide an insight into designing an effectively toughened ceramic nanocomposite materials.


Fuel ◽  
2021 ◽  
Vol 287 ◽  
pp. 119484
Author(s):  
Qiang Liu ◽  
Shixiang Liu ◽  
Yadong Lv ◽  
Ping Hu ◽  
Yajiang Huang ◽  
...  

2009 ◽  
Vol 08 (01n02) ◽  
pp. 39-42 ◽  
Author(s):  
HIROSHI OGAWA ◽  
AKINORI TEZUKA ◽  
HAO WANG ◽  
TAMIO IKESHOJI ◽  
MASAHIKO KATAGIRI

Hydrogen storage in a metallic nanoparticle was simulated by classical molecular dynamics. Distribution of hydrogen atoms inside nanoparticle was investigated by changing length and energy parameters of metal– H bonds. Hydrogen atoms diffused into the particle and distributed homogeneously in case of weak metal– H bonds. In case of strong metal– H bonds, a hydrogen-rich surface layer was observed which suppresses the inward diffusion of hydrogen atoms. Structural modification of nanoparticle accompanied by grain boundary formation due to hydrogen loading was also observed. These variations in dynamical and structural features are considered to affect the hydrogen storage properties in nanoparticles.


1999 ◽  
Vol 110 (8) ◽  
pp. 3736-3747 ◽  
Author(s):  
Victor S. Batista ◽  
Martin T. Zanni ◽  
B. Jefferys Greenblatt ◽  
Daniel M. Neumark ◽  
William H. Miller

2016 ◽  
Vol 30 (01) ◽  
pp. 1550253 ◽  
Author(s):  
Xinjian Liu ◽  
Yu Jin ◽  
Congliang Huang ◽  
Jingfeng He ◽  
Zhonghao Rao ◽  
...  

Temperature and pressure have direct and remarkable implications for drying and dewatering effect of low rank coals such as lignite. To understand the microenergy change mechanism of lignite, the molecular dynamics simulation method was performed to study the self-diffusion of lignite/water under different temperatures and pressure. The results showed that high temperature and high pressure can promote the diffusion of lignite/water system, which facilitates the drying and dewatering of lignite. The volume and density of lignite/water system will increase and decrease with temperature increasing, respectively. Though the pressure within simulation range can make lignite density increase, the increasing pressure showed a weak impact on variation of density.


2004 ◽  
Vol 18 (15) ◽  
pp. 2123-2139 ◽  
Author(s):  
BIN XUE ◽  
JUN WANG ◽  
WEI WANG

We study the "folding" behaviors of homopolymers with one end fixed. By using canonical ensemble molecular dynamics simulation method, we observe the conformational changes during folding processes. Long chains collapse to the helical nuclei, then regroup to helix from the free-end to form the compact conformations through the middle stages of helix-like coil and helix-like cone, while short chains do not apparently have the above mentioned middle stages. Through simulated annealing, the native conformation of homopolymer chain in our model is found to be helix. We show the relations between specific heat C v (T) and radius of gyration R g (T) as functions of temperature, chain length and the interaction strength, respectively. We find that these two quantities match well and can be combined to interpret the "folding" process of the homopolymer. It is found that the collapse temperature Tθ and the native-like folding temperature T f do not change with the chain length in our model, however the interaction strength affects the values of Tθ and T f .


Sign in / Sign up

Export Citation Format

Share Document