Building the UK ABWR: Developments in Structural Integrity Safety Cases for Highest Reliability Components in the UK

Author(s):  
Tim Jelfs ◽  
James O’Neill ◽  
Angus Beveridge

Nuclear power plants contain certain components whose gross failure would lead to intolerable radiological consequences. In the UK, a common terminology used for such components is Very High Integrity (VHI). If it is not possible to engineer lines of protection for these components, a safety case must demonstrate to UK regulators that the probability of gross failure is demonstrably so low that it can be discounted. A previous paper [Ref. 1] has described, at a high level, how the structural integrity safety case for a nuclear new build project in the UK — the UK Advanced Boiling Water Reactor (UK ABWR) is being structured. As described in [Ref. 1], the structural integrity safety case for the UK ABWR is based on the guidance provided by the UK Technical Advisory Group on Structural Integrity (TAGSI) and aims to demonstrate a multi-legged safety case with robust and independent legs giving confidence of defense in depth. Design to the internationally recognized ASME code [Refs. 2, 3, 4] is supplemented by a significant number of beyond code requirements such as supplementary inspection and inspection qualification, augmented material testing requirements, defect tolerance assessment to the well-established R6 procedure [Ref. 5], and demonstration that design and manufacturing processes have reduced risks to As Low as Reasonably Practicable (ALARP). This paper provides an updated position of the progress made on the UK ABWR project. It also provides more specific details on the activities the future licensee, Horizon Nuclear Power, has performed in support of the demonstration that design and manufacturing processes have reduced risks to ALARP. This kind of additional work is vital to providing the UK regulator with confidence that the risk of failure of VHI components has been reduced to ALARP.

Author(s):  
T. Jelfs ◽  
M. Hayashi ◽  
A. Toft

Gross failure of certain components in nuclear power plant has the potential to lead to intolerable radiological consequences. For these components, UK regulatory expectations require that the probability of gross failure must be shown to be so low that it can be discounted, i.e. that it is incredible. For prospective vendors of nuclear power plant in the UK, with established designs, the demonstration of “incredibility of failure” can be an onerous requirement carrying a high burden of proof. Requesting parties may need to commit to supplementary manufacturing inspection, augmented material testing requirements, enhanced defect tolerance assessment, enhanced material specifications or even changes to design and manufacturing processes. A key part of this demonstration is the presentation of the structural integrity safety case argument. UK practice is to develop a safety case that incorporates the notion of ‘conceptual defence-in-depth’ to demonstrate the highest structural reliability. In support of recent Generic Design Assessment (GDA) submissions, significant experience has been gained in the development of so called “incredibility of failure” arguments. This paper presents an overview of some of the lessons learned relating to the identification of the highest reliability components, the development of the structural integrity safety arguments in the context of current GDA projects, and considers how the UK Technical Advisory Group on Structural Integrity (TAGSI) recommendations continue to be applied almost 15 years after their work was first published. The paper also reports the approach adopted by Horizon Nuclear Power and their partners to develop the structural integrity safety case in support of the GDA process to build the UK’s first commercial Boiling Water Reactor design.


Author(s):  
Ming Leang Ang ◽  
Nuh Mohamud ◽  
Hiromasa Chitose ◽  
Naoki Hirokawa ◽  
Ryusuke Kimura

The demand for continuous improvement in safety of nuclear power plants has led to an international expectation that early or large releases of fission products as a result of severe accidents be practically eliminated for new reactor designs. The UK Department for Business, Energy and Industrial Strategy has recently published the Seventh UK Report which provided confirmation of UK demonstrating compliance with the obligations of the Convention on Nuclear Safety [Ref-1]. Relating to Article 14 on the Assessment and Verification of Safety, the UK nuclear Regulator (Office for Nuclear Regulation (ONR)) has the expectation of the demonstration of ‘practical elimination’ of potential severe accident states be included in the safety cases for new nuclear power plants [Ref-2]. In order to achieve this, the safety case should show either that it is physically impossible for the accident states to occur or the states can be considered to be extremely unlikely with a high degree of confidence by design provisions [Ref-3] [Ref-4] [Ref-5]. A demonstration framework was developed and applied successfully in the UK ABWR Generic Design Assessment (GDA) Pre-Construction Safety Report (PCSR) which was submitted to the ONR in August 2017 [Ref-6]. A summary of this demonstration is provided in this paper.


Author(s):  
F. M. Burdekin ◽  
R. A. Ainsworth ◽  
D. P. G. Lidbury

TAGSI is an acronym for The UK Technical Advisory Group on the Structural Integrity of High Integrity Plant. The purpose of TAGSI is to address and make recommendations on issues raised by its sponsoring organisations in discussion with independent advisors. Collectively, these sponsoring organisations operate, maintain, assess and regulate nuclear power producing and chemical plant. Against this background, an overview is presented of the recent work of TAGSI in terms of structural integrity issues addressed, symposia organised, and output appearing in the open literature. Other papers at this conference describe some of the technical work of TAGSI in more detail.


Author(s):  
Pierre Dulieu ◽  
Valéry Lacroix

During the 2012 outage at Doel 3 and Tihange 2 Nuclear Power Plants, specific ultrasonic in-service inspections revealed a large number of quasi-laminar indications in the base metal of the reactor pressure vessels, mainly in the lower and upper core shells. The observed indications could subsequently be attributed to hydrogen flaking induced during the component manufacturing process. As a consequence, a Flaw Acceptability Assessment had to be performed as a part of the Safety Case demonstrating the fitness-for-service of these units. In that framework, detailed analyses using eXtended Finite Element Method were conducted to model the specific character of hydrogen flakes. Their quasi-laminar orientation as well as their high density required setting up 3D multi-flaws model accounting for flaw interaction. These calculations highlighted that even the most penalizing flaw configurations are harmless in terms of structural integrity despite the consideration of higher degradation of irradiated material toughness.


Author(s):  
Valéry Lacroix ◽  
Pierre Dulieu ◽  
Damien Couplet

During the 2012 outage at Doel 3 and Tihange 2 Nuclear Power Plants, a large number of quasi-laminar indications were detected, mainly in the lower and upper core shells. As a consequence, both units remained core unloaded pending the elaboration of an extensive Safety Case demonstrating the Structural Integrity of the RPVs in all operating modes, transients and accident conditions. A large part of this demonstration consists of the Flaw Acceptability Assessment inspired by the ASME XI procedure but adapted to the nature and number of indications found in the Doel 3 and Tihange 2 RPVs. In particular, ASME XI IWB-3300 article requires combining closely spaced flaws in order to account for their mechanical interactions. However, it appeared early that the strict application of the current ASME XI proximity criteria for laminar flaws to the actual flaw indications found at Doel 3 led to unrealistic results and conclusions. Therefore, an alternative methodology to derive suitable characterization rules applicable to specific flaws observed at Doel 3 and Tihange 2 RPVs has been successfully developed, implemented and validated.


Author(s):  
Valéry Lacroix ◽  
Pierre Dulieu

During the 2012 outage at Doel 3 and Tihange 2 Nuclear Power Plants, a large number of quasi-laminar indications were detected in the reactor pressure vessels, mainly in the lower and upper core shells. The observed indications could subsequently be attributed to hydrogen flaking induced during the component manufacturing process. As a consequence, both units remained core unloaded pending the elaboration of an extensive Safety Case demonstrating that they can be safely operated. The Structural Integrity Assessment of the RPVs, through the Flaw Acceptability Analysis, aimed at demonstrating that the identified indications do not jeopardize the integrity of the reactor vessel in all operating modes, transients and accident conditions. This demonstration, presented in this paper, has been done on the basis of a specific innovative methodology inspired by the ASME XI procedure but adapted to the nature and number of indications found in the Doel 3 and Tihange 2 RPVs.


10.6036/10156 ◽  
2021 ◽  
Vol 96 (4) ◽  
pp. 355-358
Author(s):  
Pablo Fernández Arias ◽  
DIEGO VERGARA RODRIGUEZ

Centralized Temporary Storage Facility (CTS) is an industrial facility designed to store spent fuel (SF) and high level radioactive waste (HLW) generated at Spanish nuclear power plants (NPP) in a single location. At the end of 2011, the Spanish Government approved the installation of the CTS in the municipality of Villar de Cañas in Cuenca. This approval was the outcome of a long process of technical studies and political decisions that were always surrounded by great social rejection. After years of confrontations between the different political levels, with hardly any progress in its construction, this infrastructure of national importance seems to have been definitively postponed. The present research analyzes the management strategy of SF and HLW in Spain, as well as the alternative strategies proposed, taking into account the current schedule foreseen for the closure of the Spanish NPPs. In view of the results obtained, it is difficult to affirm that the CTS will be available in 2028, with the possibility that its implementation may be delayed to 2032, or even that it may never happen, making it necessary to adopt an alternative strategy for the management of GC and ARAR in Spain. Among the different alternatives, the permanence of the current Individualized Temporary Stores (ITS) as a long-term storage strategy stands out, and even the possibility of building several distributed temporary storage facilities (DTS) in which to store the SF and HLW from several Spanish NPP. Keywords: nuclear waste, storage, nuclear power plants.


2012 ◽  
Vol 76 (8) ◽  
pp. 2911-2918 ◽  
Author(s):  
G. Deissmann ◽  
S. Neumeier ◽  
G. Modolo ◽  
D. Bosbach

AbstractSeparated stocks of UK civil plutonium are currently held as a zero value asset in storage, as there is no final decision about whether they should be treated as a resource for future use as nuclear fuel or as waste. Irrespective of future UK government strategies regarding plutonium, at least a portion of the UK civil plutonium inventory will be designated for geological disposal. In this context, we performed a high-level review of the performance of potential wasteforms for the disposal of separated civil plutonium. The key issues considered were the durability and chemical reactivity of the wasteforms in aqueous environments and the long-term radionuclide release under conditions relevant to geological disposal. The major findings of the review, relevant not only to the situation in the UK but to plutonium disposal in general, are summarized in this paper. The review showed that, in the event of a decision being taken to declare plutonium as a waste for disposal, more systematic studies would be required to constrain the wasteform performance under repository conditions in order to derive realistic source terms for a safety case.


2005 ◽  
Vol 19 (11) ◽  
pp. 1988-1997 ◽  
Author(s):  
June-soo Park ◽  
Ha-cheol Song ◽  
Ki-seok Yoon ◽  
Taek-sang Choi ◽  
Jai-hak Park

Author(s):  
A. Stacey ◽  
J. V. Sharp

This paper presents a primary integrity management (PIM) framework for mobile installations (semi-submersibles and self elevating installations) and permanently moored floating installations (FPSOs, FSUs, etc.). The primary integrity of self-elevating and floating installations depends on both the primary structure and additional systems. The framework is based upon the UK regulatory requirements for offshore installations, including the need for a thorough review of the safety case accounting for any changes in condition and future plans and verification of the primary integrity management (PIM) process. Requirements and guidance are provided for all aspects of the integrity management process covering: • primary integrity hazard identification and risk control; • resources, organisation and management, including competency assurance; • information management and documentation; • primary integrity management policy, objectives and strategy; • inspection, examination and testing; • evaluation of structure and other primary systems; • maintenance, repair and upkeep; • audit, review and continual improvement. The framework also contains guidance based on the application of existing standards and industry published documents. Finally, guidance is given on the implementation of the framework.


Sign in / Sign up

Export Citation Format

Share Document