Equivalent Diameter for Predicting Vortex Shedding of Finned Cylinders in Cross-Flow

2021 ◽  
Author(s):  
Mohammed Alziadeh ◽  
Atef Mohany

Abstract This article explores different equivalent diameter equations found in the literature for shedding frequency scaling and applying it to various types of finned cylinders in industrial heat exchangers. The focus is on three finned cylinder types: straight, twist-serrated, and crimped spirally finned cylinders. Within each finned cylinder category, at least three different finned cylinders are investigated. The results indicate that utilizing the appropriate equivalent diameter for vortex shedding frequency scaling collapses the data within the Strouhal bounds of a bare cylinder away from resonance excitation. However, the onset of flow-excited acoustic resonance and peak acoustic pressure in all the finned cylinder cases occur at a reduced flow velocity earlier than their equivalent diameter bare cylinder. This suggests that although utilizing the appropriate equivalent diameter can predict the shedding frequency away from resonance, it cannot be used in velocity scaling to predict the onset of acoustic resonance in finned tube bundle.

Author(s):  
Mohammed Alziadeh ◽  
Atef Mohany

Abstract This article explores the applicability of utilizing different equivalent diameter (Deq) equations to estimate the vortex shedding frequency and onset of self-excited acoustic resonance for various types of finned cylinders. The focus is on three finned cylinder types that are commonly used in industrial heat exchangers: straight, twist-serrated, and crimped spirally finned cylinders. Within each type of fins, at least three different finned cylinders are investigated. The results indicate that at off-resonance conditions, utilizing the appropriate equivalent diameter collapses the Strouhal number data within the typical Strouhal number variations of an equivalent diameter circular, bare cylinder. However, when acoustic resonance is initiated, the onset and the peak of resonance excitation in all of the finned cylinder cases generally occurred at a reduced flow velocity earlier than that observed from their equivalent diameter bare cylinders. This suggests that although utilizing the appropriate equivalent diameter can reasonably estimate the vortex shedding frequency away from acoustic resonance excitation, it cannot be used to predict the onset of acoustic resonance in finned tubes. The findings of this study indicate that the effective diameter approach is not sufficient to capture the intrinsic changes in the flow-sound interaction mechanism as a result of adding fins to a bare cylinder. Thus, a revision of the acoustic Strouhal number charts is required for finned tubes of different types and arrangements.


2019 ◽  
Vol 141 (5) ◽  
Author(s):  
Mahmoud Shaaban ◽  
Atef Mohany

Excitation of acoustic resonance by flow over tube bundles in heat exchangers can cause hazardous levels of acoustic pressure that may pose operational and environmental risks. The previous studies have indicated that inline arrangements of cylinders excite acoustic resonance of a nature different from that of a single cylinder. In this work, the excitation of acoustic resonance by cross-flow around inline arrangements of cylinders is experimentally investigated to identify the role of critical parameters on resonance characteristics. Results show that flow around inline tube bundles can excite acoustic resonance due to periodic flow oscillations over the cavity formed between successive cylinders rather than periodic wake phenomena. Based on precoincidence resonance characteristics, a criterion is introduced to predict the occurrence of acoustic resonance in inline arrangements of cylinders. The proposed parametric criterion does not only identify the potential for resonance excitation for inline arrangements of cylinders experimentally investigated in this work but it also provides a method to separate resonant from nonresonant cases for inline tube bundle data from the literature.


Author(s):  
Aimie Faucett ◽  
Todd Harman ◽  
Tim Ameel

Flow around a rigid, truncated, wall-mounted cylinder with an aspect ratio of 5 is examined computationally at various Reynolds numbers Re to determine how the end effects impact the vortex shedding frequency. The existence of the wall and free end cause a dampening of the classical shedding frequency found for a semi-infinite, two-dimensional cylinder, as horseshoe vortices along the wall and flow over the tip entrain into the shedding region. This effect was observed for Reynolds numbers in the range of 50 to 2000, and quantified by comparing the modified Strouhal numbers to the classical (two-dimensional) solution for Strouhal number as a function of Reynolds number. The range of transition was found to be 220 < Re < 300, versus 150 < Re < 300 for the classical case. Vortex shedding started at Re ≈ 100, significantly above Re = 50, where shedding starts for the two-dimensional case.


Author(s):  
Aleš Tondl

Abstract A pendulum is attached to an elastically mounted body in cross flow. The body is excited due to the action of vortex shedding. The stability of the semi-trivial solution (representing the vibration of the body with the non-oscillating pendulum) is investigated. It is proved that a certain interval of the vortex shedding frequency can exist where the semi-trivial solution representing the vertical vibration of the body is unstable. The body vibration is the source of parametric excitation of the pendulum resulting in autoparametric resonance.


2020 ◽  
Vol 143 (2) ◽  
Author(s):  
Mohammed Alziadeh ◽  
Atef Mohany

Abstract The aeroacoustic response of two tandem spirally finned cylinders is experimentally investigated. Three different pairs of finned cylinders are studied with fin pitch-to-root diameter ratios (p/Dr) ranging between 0.37≤p/Dr≤0.74. The spiral fins are crimped similar to those used in industrial heat exchangers. The results of the finned cylinders are compared with bare, circular cylinders with a modified equivalent diameter (Deq). The spacing ratio (L/Deq) between the cylinders are kept constant at L/Deq=2.00. The Strouhal number (StDeq) of the tandem finned cylinders is found to be higher compared to the tandem bare cylinders, resulting in an earlier onset of coincidence resonance. Moreover, unlike the tandem bare cylinders, the Strouhal number of the finned cylinders did not depend on the Reynolds number, suggesting that the flow characteristics around the finned cylinders are unaffected by Reynolds number. Only the tandem finned cylinders with the lowest fin pitch-to-root diameter ratio (p/Dr=0.37) were capable of exciting precoincidence acoustic resonance. The precoincidence resonance mechanism is similar to that observed in in-line tube bundles.


2001 ◽  
Vol 443 ◽  
pp. 197-229 ◽  
Author(s):  
Y. ZHOU ◽  
Z. J. WANG ◽  
R. M. C. SO ◽  
S. J. XU ◽  
W. JIN

Free vibrations of two side-by-side cylinders with fixed support (no rotation and displacement) at both ends placed in a cross-flow were experimentally investigated. Two fibre-optic Bragg grating sensors were used to measure the dynamic strain, while a hot wire and flow visualization were employed to examine the flow field around the cylinders. Three T/d ratios, 3.00, 1.70 and 1.13, were investigated, where T is the centre-to-centre cylinder spacing and d is the diameter; they give rise to three different flow regimes. The investigation throws new light on the shed vortices and their evolution. A new interpretation is proposed for the two different dominant frequencies, which are associated with the narrow and the wide wake when the gap between the cylinders is between 1.5 and 2.0 as reported in the literature. The structural vibration behaviour is closely linked to the flow characteristics. At T/d = 3:00, the cross-flow root-mean-square strain distribution shows a very prominent peak at the reduced velocity Ur ≈ 26 when the vortex shedding frequency fs, coincides with the third-mode natural frequency of the combined fluid–cylinder system. When T/d < 3:00, this peak is not evident and the vibration is suppressed because of the weakening strength of the vortices. The characteristics of the system modal damping ratios, including both structural and fluid damping, and natural frequencies are also investigated. It is found that both parameters depend on T/d. Furthermore, they vary slowly with Ur, except near resonance where a sharp variation occurs. The sharp variation in the natural frequencies of the combined system is dictated by the vortex shedding frequency, in contrast with the lock-in phenomenon, where the forced vibration of a structure modifies the vortex shedding frequency. This behaviour of the system natural frequencies persists even in the case of the single cylinder and does not seem to depend on the interference between cylinders. A linear analysis of an isolated cylinder in a cross-flow has been carried out. The linear model prediction is qualitatively consistent with the experimental observation of the system damping ratios and natural frequencies, thus providing valuable insight into the physics of fluid–structure interactions.


2006 ◽  
Vol 129 (1) ◽  
pp. 162-168
Author(s):  
Fumio Inada ◽  
Kimitoshi Yoneda ◽  
Akira Yasuo ◽  
Takashi Nishihara

The local fluid excitation force acting on a rotated square tube bundle having transverse pitch-to-diameter ratio of T∕D=3.1, in a single-phase cross-flow was measured, and the normalized power spectral density (NPSD) and correlation length in the axial direction of a tube were examined. The fluid excitation force acting on the interior tube was from three to ten times larger than that acting on the upstream tube. The fluid force was almost fully developed after the third row. NPSD of the fluid excitation force could be almost plotted on a single universal curve. Regarding the lift direction, there was a peak in NPSD at fD∕u∼0.3 caused by vortex shedding. Regarding the drag direction, there could be another peak in NPSD around twice the vortex shedding frequency. In the region of fD∕u>0.5, where the effect of the vortex shedding was assumed to be small in the lift direction, the correlation length of the lift direction was ∼1.1D. NPSD was a little larger than previous results for tube bundles of relatively small pitch to diameter ratios summarized by Axisa, Antunes, and Villard (1990, J. Fluid Struct., 4, pp. 321–341).


Author(s):  
Hiromitsu Hamakawa ◽  
Eiichi Nishida ◽  
Kenta Asakura

In the present paper the attention is focused on vortex shedding synchronization on acoustic resonance in in-line tube banks which occurred in the two-dimensional model of boiler. And we have examined the verification of proposed modeling method. We measured the characteristics of acoustic resonance, acoustic damping, the pressure fluctuation on the surface of tubes at the nodes of acoustic pressure and the acoustic pressure fluctuation on the side wall of the duct. As the acoustic mode number increased, the acoustic damping ratio decreased. As the tube pitch ratio in the flow direction decreased, the acoustic damping increased for all acoustic modes and the vortex shedding frequency became broad-band. The multiple resonance modes of lower acoustic damping were generated within the broad-band vortex shedding frequency. If the acoustic resonance occurred, the peak level of spectrum of surface pressure fluctuation and the coherence between vortex shedding and wall acoustic pressure in the tube banks also increased. The features of experimental results agree well with those obtained by using the proposed modeling method. We have discussed the characteristics of vortex shedding synchronization by using proposed the modeling method.


Sign in / Sign up

Export Citation Format

Share Document