Aneurysms of the Posterior Communicating Artery: Hemodynamics and Shapes

Author(s):  
Svetlana Khvostova ◽  
Christopher Putman ◽  
Juan R. Cebral

The pathogenesis, progression and rupture of cerebral aneurysms are multi-factorial mechanisms that involve arterial hemodynamics, wall biomechanics, wall mechano-transduction or mechano-biology, and peri-aneurysmal environmental effects [1]. However, the interaction and relative importance of these factors remains poorly understood. Presumably, the geometrical shape and evolution of aneurysms are governed by the interaction between hemodynamic stimuli (wall shear stress) and the biological responses of the arterial wall. In order to better understand this interaction, the goal of this study was to characterize and relate the geometrical shapes of intracranial aneurysms at a single location, the posterior communicating artery (PComA), to blood flow patterns, wall shear stress (WSS), and clinical history of previous rupture.

2021 ◽  
Vol 18 (1) ◽  
Author(s):  
Fan He ◽  
Lu Hua ◽  
Tingting Guo

Abstract Background The effects of arterial wall compliance on blood flow have been revealed using fluid-structure interaction in last decades. However, microcirculation is not considered in previous researches. In fact, microcirculation plays a key role in regulating blood flow. Therefore, it is very necessary to involve microcirculation in arterial hemodynamics. Objective The main purpose of the present study is to investigate how wall compliance affects the flow characteristics and to establish the comparisons of these flow variables with rigid wall when microcirculation is considered. Methods We present numerical modeling in arterial hemodynamics incorporating fluid-structure interaction and microcirculation. A novel outlet boundary condition is employed to prescribe microcirculation in an idealised model. Results The novel finding in this work is that wall compliance under the consideration of microcirculation leads to the increase of wall shear stress in contrast to rigid wall, contrary to the traditional result that wall compliance makes wall shear stress decrease when a constant or time dependent pressure is specified at an outlet. Conclusions This work provides the valuable study of hemodynamics under physiological and realistic boundary conditions and proves that wall compliance may have a positive impact on wall shear stress based on this model. This methodology in this paper could be used in real model simulations.


2015 ◽  
Vol 8 (8) ◽  
pp. 808-812 ◽  
Author(s):  
Ying Zhang ◽  
Linkai Jing ◽  
Jian Liu ◽  
Chuanhui Li ◽  
Jixing Fan ◽  
...  

ObjectiveTo identify clinical, morphological, and hemodynamic independent characteristic factors that discriminate posterior communicating artery (PCoA) aneurysm rupture status.Methods173 patients with single PCoA aneurysms (108 ruptured, 65 unruptured) between January 2012 and June 2014 were retrospectively collected. Patient-specific models based on their three-dimensional digital subtraction angiography images were constructed and analyzed by a computational fluid dynamic method. All variables were analyzed by univariate analysis and multivariate logistic regression analysis.ResultsTwo clinical factors (younger age and atherosclerosis), three morphological factors (higher aspect ratio, bifurcation type, and irregular shape), and six hemodynamic factors (lower mean and minimum wall shear stress, higher oscillatory shear index, a greater portion of area under low wall shear stress, unstable and complex flow pattern) were significantly associated with PCoA aneurysm rupture. Independent factors characterizing the rupture status were identified as age (OR 0.956, p=0.015), irregular shape (OR 6.709, p<0.001), and minimum wall shear stress (OR 0.001, p=0.038).ConclusionsWe combined clinical, morphological, and hemodynamic characteristics analysis and found the three strongest independent factors for PCoA aneurysm rupture were younger age, irregular shape, and low minimum wall shear stress. This may be useful for guiding risk assessments and subsequent treatment decisions for PCoA aneurysms.


2012 ◽  
Vol 134 (9) ◽  
Author(s):  
Matthew D. Ford ◽  
Ugo Piomelli

Cerebral aneurysms are a common cause of death and disability. Of all the cardiovascular diseases, aneurysms are perhaps the most strongly linked with the local fluid mechanic environment. Aside from early in vivo clinical work that hinted at the possibility of high-frequency intra-aneurysmal velocity oscillations, flow in cerebral aneurysms is most often assumed to be laminar. This work investigates, through the use of numerical simulations, the potential for disturbed flow to exist in the terminal aneurysm of the basilar bifurcation. The nature of the disturbed flow is explored using a series of four idealized basilar tip models, and the results supported by four patient specific terminal basilar tip aneurysms. All four idealized models demonstrated instability in the inflow jet through high frequency fluctuations in the velocity and the pressure at approximately 120 Hz. The instability arises through a breakdown of the inflow jet, which begins to oscillate upon entering the aneurysm. The wall shear stress undergoes similar high-frequency oscillations in both magnitude and direction. The neck and dome regions of the aneurysm present 180 deg changes in the direction of the wall shear stress, due to the formation of small recirculation zones near the shear layer of the jet (at the frequency of the inflow jet oscillation) and the oscillation of the impingement zone on the dome of the aneurysm, respectively. Similar results were observed in the patient-specific models, which showed high frequency fluctuations at approximately 112 Hz in two of the four models and oscillations in the magnitude and direction of the wall shear stress. These results demonstrate that there is potential for disturbed laminar unsteady flow in the terminal aneurysm of the basilar bifurcation. The instabilities appear similar to the first instability mode of a free round jet.


2016 ◽  
Vol 16 (1) ◽  
pp. 97-115 ◽  
Author(s):  
A. J. Geers ◽  
H. G. Morales ◽  
I. Larrabide ◽  
C. Butakoff ◽  
P. Bijlenga ◽  
...  

Author(s):  
Arun Ramu ◽  
Guo-Xiang Wang

Intracranial aneurysms are abnormal enlargement in the walls of cerebral arteries. The rupture of aneurysms is the leading cause of subarachnoid hemorrhage (SAH), with a high mortality and morbidity rate. A majority of saccular cerebral aneurysms occur at sites of arterial bifurcations. However, a good percentage of aneurysms are curvature induced and are found along the cavernous arterial segment. The occurrence of such non branching aneurysms, clinically called dorsal aneurysms, can be related to the increased wall shear stress at the curved arteries. The rupture of aneurysms usually occurs at the dome region, which is subjected to reduced wall shear stress (wss) owing to low re-circulating flow. Hence it is important to understand the impact of arterial curvature on the WSS distribution along the dome of aneurysms. Previously, studies have not taken into account the aspect of low WSS along the dome region. In the present 3-d computational fluid dynamic approach, we investigate the impact of varying arterial curvature on spherical dorsal aneurysms. The primary velocity patterns, the WSS distribution along the dome of the aneurysm and the area of increased WSS have been quantified for steady flow conditions.


Author(s):  
Jennifer Dolan ◽  
Song Liu ◽  
Hui Meng ◽  
John Kolega

In both human and animal models, cerebral aneurysms tend to develop at the apices of bifurcations in the cerebral vasculature. Due to the focal nature of aneurysm development it has long been speculated that hemodynamics are an important factor in aneurysm susceptibility. The local hemodynamics of bifurcations are complex, being characterized by flow impingement causing a high frictional force on the vessel wall known as wall shear stress (WSS) and significant flow acceleration or deceleration, manifested as the positive or negative spatial gradient of WSS (WSSG). In vivo studies have recently identified that aneurysm initiation occurs at areas of the vessel wall that experience a combination of both high WSS and positive WSSG [1,2]


Author(s):  
Jennifer Dolan ◽  
Frasier Sim ◽  
Hui Meng ◽  
John Kolega

In both human and animal models, cerebral aneurysms tend to develop at the apices of bifurcations in the cerebral vasculature where the blood vessel wall experiences complex hemodynamics. In vivo studies have recently revealed that the initiation of cerebral aneurysms is confined to a well-defined hemodynamic microenvironment [1,2]. Metaxa et al. [2] found that early aneurysm remodeling initiates where the vessel wall experiences high wall shear stress (WSS) and flow is accelerating, thus creating a positive spatial gradient in WSS (WSSG). Closer examination of such in vivo studies reveals that exposure of the vessel wall to equally high WSS in the presence of decelerating flow, that is, negative WSSG, does not result in aneurysm-like destruction.


Author(s):  
Jennifer Dolan ◽  
Sukhjinder Singh ◽  
Hui Meng ◽  
John Kolega

Cerebral aneurysms tend to develop at bifurcation apices or the outer side of curved vessels where the blood vessel wall experiences complex hemodynamics. In vivo studies have recently revealed that the initiation of cerebral aneurysms is confined to a well-defined hemodynamic microenvironment. Specifically aneurysms form where the vessel wall experiences high fluid shear stress (wall shear stress, WSS) and flow is accelerating, so that the wall is exposed to a positive spatial gradient in the fluid shear stress (wall shear stress gradient, WSSG)[1,2]. Closer examination of such in vivo studies reveals that exposure of the vessel wall to equally high WSS in the presence of decelerating flow, that is, negative WSSG, does not result in aneurysm-like remodeling.


Sign in / Sign up

Export Citation Format

Share Document