Intact Knee and ACL Forces for the Human and Ovine Model During Simulated In Vivo Human and In Vivo Ovine Motions

Author(s):  
Safa T. Herfat ◽  
Daniel V. Boguszewski ◽  
Jason T. Shearn

Patients frequently experience knee injuries, with the ACL being one of the most commonly injured structures requiring surgery [1]. ACL tears typically lead to osteoarthritis in the long term, even after surgical treatment [2]. This chronic joint degeneration has been attributed to the failure of current ACL reconstructions to restore the native biomechanics of the knee joint [3]. To design more effective treatments, investigators must first understand normal knee function for multiple activities of daily living (ADLs). The 3D in vivo forces and moments of the normal intact knee, as well as those for just the ACL have not yet been determined for any ADL. These in vivo forces and moments can potentially be measured for multiple ADLs in an animal model. A biomechanical surrogate allows for 1) sensors or marker systems to be rigidly fixed to the knee joint to accurately measure the 6 degree of freedom (DOF) kinematics, and for 2) the kinematics to be simulated and applied to the harvested limb to measure the corresponding joint forces and moments.

2012 ◽  
Vol 134 (10) ◽  
Author(s):  
Safa T. Herfat ◽  
Daniel V. Boguszewski ◽  
Rebecca J. Nesbitt ◽  
Jason T. Shearn

Current surgical treatments for common knee injuries do not restore the normal biomechanics. Among other factors, the abnormal biomechanics increases the susceptibility to the early onset of osteoarthritis. In pursuit of improving long term outcome, investigators must understand normal knee kinematics and corresponding joint and anterior cruciate ligament (ACL) kinetics during the activities of daily living. Our long term research goal is to measure in vivo joint motions for the ovine stifle model and later simulate these motions with a 6 degree of freedom (DOF) robot to measure the corresponding 3D kinetics of the knee and ACL-only joint. Unfortunately, the motion measurement and motion simulation technologies used for our project have associated errors. The objective of this study was to determine how motion measurement and motion recreation error affect knee and ACL-only joint kinetics by perturbing a simulated in vivo motion in each DOF and measuring the corresponding intact knee and ACL-only joint forces and moments. The normal starting position for the motion was perturbed in each degree of freedom by four levels (−0.50, −0.25, 0.25, and 0.50 mm or degrees). Only translational perturbations significantly affected the intact knee and ACL-only joint kinetics. The compression-distraction perturbation had the largest effect on intact knee forces and the anterior-posterior perturbation had the largest effect on the ACL forces. Small translational perturbations can significantly alter intact knee and ACL-only joint forces. Thus, translational motion measurement errors must be reduced to provide a more accurate representation of the intact knee and ACL kinetics. To account for the remaining motion measurement and recreation errors, an envelope of forces and moments should be reported. These force and moment ranges will provide valuable functional tissue engineering parameters (FTEPs) that can be used to design more effective ACL treatments.


2018 ◽  
Vol 18 (10) ◽  
pp. 1896-1909 ◽  
Author(s):  
Tian Wang ◽  
Matthew H. Pelletier ◽  
Chris Christou ◽  
Rema Oliver ◽  
Ralph J. Mobbs ◽  
...  

Author(s):  
Fitzgerald C Anazor ◽  
Kwaku Baryeh ◽  
Neville C Davies

Knee joint dislocation is a relatively uncommon injury but its management is important because of the associated high risk of vascular, neurological and multi-ligamentous knee injuries. Clinicians must be aware that not all knee dislocations are diagnosed on plain X-rays; a high index of suspicion is required based on clinical evaluation. Multidisciplinary specialist care is required in all cases to achieve best outcomes. Early one-stage or multiple staged ligament repair and reconstruction offer better outcomes, but most patients have some long-term functional limitation. This article provides insights into the epidemiology and management of this injury and its devastating effects.


2017 ◽  
Vol 13 (3) ◽  
pp. 272-279 ◽  
Author(s):  
Athanasios Peppas ◽  
Ariel Furer ◽  
Jon Wilson ◽  
GengHua Yi ◽  
Yanping Cheng ◽  
...  

2013 ◽  
Vol 62 (18) ◽  
pp. B249
Author(s):  
Athanasios Peppas ◽  
Jon Wilson ◽  
Yanping Cheng ◽  
Christopher Seguin ◽  
Masahiko Shibuya ◽  
...  

2017 ◽  
Vol 52 (6) ◽  
pp. 587-591 ◽  
Author(s):  
Tricia Hubbard-Turner ◽  
Erik A. Wikstrom ◽  
Sophie Guderian ◽  
Michael J. Turner

Context:  Ankle sprains remain the most common orthopaedic injury. Conducting long-term studies in humans is difficult and costly, so the long-term consequences of an ankle sprain are not entirely known. Objective:  To measure knee-joint space after a single surgically induced ankle sprain in mice. Design:  Randomized controlled trial. Setting:  University research laboratory. Patients or Other Participants:  Thirty male mice (CBA/2J) were randomly placed into 1 of 3 surgical groups: the transected calcaneofibular ligament (CFL) group, the transected anterior talofibular ligament/CFL group, or a sham treatment group. The right ankle was operated on in all mice. Main Outcome Measure(s):  Three days after surgery, all of the mice were individually housed in cages containing a solid-surface running wheel, and daily running-wheel measurements were recorded. Before surgery and every 6 weeks after surgery, a diagnostic ultrasound was used to measure medial and lateral knee-joint space in both hind limbs. Results:  Right medial (P = .003), right lateral (P = .002), left medial (P = .03), and left lateral (P = .002) knee-joint spaces decreased across the life span. The mice in the anterior talofibular ligament/CFL group had decreased right medial (P = .004) joint space compared with the sham and CFL groups starting at 24 weeks of age and continuing throughout the life span. No differences occurred in contralateral knee-joint degeneration among any of the groups. Conclusions:  Based on current data, mice that sustained a surgically induced severe ankle sprain developed greater joint degeneration in the ipsilateral knee. Knee degeneration could result from accommodation to the laxity of the ankle or biomechanical alterations secondary to ankle instability. A single surgically induced ankle sprain could significantly affect knee-joint function.


PLoS ONE ◽  
2015 ◽  
Vol 10 (3) ◽  
pp. e0123155 ◽  
Author(s):  
Jörn Reinders ◽  
Robert Sonntag ◽  
Leo Vot ◽  
Christian Gibney ◽  
Moritz Nowack ◽  
...  

Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 2273-2273
Author(s):  
Nathalie W.D. Jansen ◽  
Goris Roosendaal ◽  
Marion Wenting ◽  
Herman A.W. Hazewinkel ◽  
Johannes W.J. Bijlsma ◽  
...  

Abstract Purpose Joint bleeds lead to joint destruction. In vitro exposure of human and canine cartilage to blood results in long lasting severe adverse changes in cartilage. An in vivo joint haemorrhage in the canine knee joint demonstrates similar adverse effects although less outspoken and long-lasting. We investigated the clearance rate of blood from canine knee joints as a possible explanation for this discrepancy. Methods Blood was injected into the knee joint of Beagle dogs, either 48h, 24h or 15m before termination. The amount of red and white blood cells present in the joint cavity was determined. Chondrocyte activity and cartilage matrix integrity as well as cartilage destructive activity of synovial tissue were determined biochemically. Additionally, synovial tissue was analyzed by use of histochemistry. Results Fifteen minutes after the injection of autologous blood, the red blood cell count was 5,7*1012/L, comparable to the amount present in whole blood, and gradually decreased (1,6*1012/L at 24 hours) to 0,2*1012/L within 48 hours (less than 5%). The amount of white blood cells increased in the first 24 hours, and was still increased after 48 hours, although less than after 24 hours. The proteoglycan synthesis rate and -release were adversely affected already within 24 hours (−22% and +24% respectively), and these effects were more severe 48 hours post-injection (−34% and +53% resp.). Synovial tissue culture supernatants demonstrate cartilage destructive properties as expressed by an increased release, a decreased synthesis rate, and decreased content of cartilage proteoglycans; increasing with time after the experimental haemorrhage (+207%/+247%; −58%/−62%; −8%/−28% respectively, for 24/48 hours). Evaluation of the synovial tissue revealed at 15 minutes post-injection countless numbers of intact RBC that were almost completely disappared after 48 hours, withonly limited recruitment of macrophages and iron deposition. Conclusions Blood is cleared very rapidly from the canine knee joint, but in that short time span already has adverse effects on both cartilage and synovial tissue. This rapid clearance can play a role in the discrepancy between long-term in vitro and in vivo effects of blood-induced joint damage since more than 10% v/v blood for 48 hours is needed induced to long-term adverse effects in vitro. Irrespectively, blood has devastating effects on articular cartilage very rapidly, and in this respect it is important to prevent (traumatic) joint haemorrhages and if they occur, to treat them properly.


Sign in / Sign up

Export Citation Format

Share Document