Patient-Specific Finite Element Modeling of Mitral Valve Dynamic Deformation

Author(s):  
Qian Wang ◽  
Wei Sun

Mitral valve is a two-leaflet valve that is located between the left atrium and the left ventricle of the heart. In order to successfully replace or repair mitral valve and develop effective prosthetic devices, it is critical to understand the in vivo mechanics of the normal mitral valve. Although research has been conducted to investigate animal mitral valve strains by in vivo experiments, it is still very challenging to obtain accurate in vivo stress and strain information of the human mitral valve.

Author(s):  
Emiliano Votta ◽  
Enrico Caiani ◽  
Federico Veronesi ◽  
Monica Soncini ◽  
Franco Maria Montevecchi ◽  
...  

In the current scientific literature, particular attention is dedicated to the study of the mitral valve and to comprehension of the mechanisms that lead to its normal function, as well as those that trigger possible pathological conditions. One of the adopted approaches consists of computational modelling, which allows quantitative analysis of the mechanical behaviour of the valve by means of continuum mechanics theory and numerical techniques. However, none of the currently available models realistically accounts for all of the aspects that characterize the function of the mitral valve. Here, a new computational model of the mitral valve has been developed from in vivo data, as a first step towards the development of patient-specific models for the evaluation of annuloplasty procedures. A structural finite-element model of the mitral valve has been developed to account for all of the main valvular substructures. In particular, it includes the real geometry and the movement of the annulus and papillary muscles, reconstructed from four-dimensional ultrasound data from a healthy human subject, and a realistic description of the complex mechanical properties of mitral tissues. Preliminary simulations allowed mitral valve closure to be realistically mimicked and the role of annulus and papillary muscle dynamics to be quantified.


Author(s):  
Tristan Belzacq ◽  
Vít Nováček ◽  
Gaëtan Guérin ◽  
Doris Tran ◽  
David Mitton ◽  
...  

A patient-specific computational finite element modeling of the abdominal wall (AW) has been developed to enable biomechanical analysis for customizing and optimizing AW surgical treatments. The methodology consisted on the identification by reverse engineering of patient-specific AW characteristics for physiological pressure settings. The approach combined in vivo experiments and numerical simulations. As a first application, a patient specific model was used to simulate mid-line incision closure technique.


Author(s):  
Mostafa Omran Hussein ◽  
Mohammed Suliman Alruthea

Abstract Objective The purpose of this study was to compare methods used for calculating heterogeneous patient-specific bone properties used in finite element analysis (FEA), in the field of implant dentistry, with the method based on homogenous bone properties. Materials and Methods In this study, three-dimensional (3D) computed tomography data of an edentulous patient were processed to create a finite element model, and five identical 3D implant models were created and distributed throughout the dental arch. Based on the calculation methods used for bone material assignment, four groups—groups I to IV—were defined. Groups I to III relied on heterogeneous bone property assignment based on different equations, whereas group IV relied on homogenous bone properties. Finally, 150 N vertical and 60-degree-inclined forces were applied at the top of the implant abutments to calculate the von Mises stress and strain. Results Groups I and II presented the highest stress and strain values, respectively. Based on the implant location, differences were observed between the stress values of group I, II, and III compared with group IV; however, no clear order was noted. Accordingly, variable von Mises stress and strain reactions at the bone–implant interface were observed among the heterogeneous bone property groups when compared with the homogenous property group results at the same implant positions. Conclusion Although the use of heterogeneous bone properties as material assignments in FEA studies seem promising for patient-specific analysis, the variations between their results raise doubts about their reliability. The results were influenced by implants’ locations leading to misleading clinical simulations.


2010 ◽  
Vol 89 (5) ◽  
pp. 1546-1553 ◽  
Author(s):  
Jonathan F. Wenk ◽  
Zhihong Zhang ◽  
Guangming Cheng ◽  
Deepak Malhotra ◽  
Gabriel Acevedo-Bolton ◽  
...  

2020 ◽  
Vol 142 (12) ◽  
Author(s):  
Johane H. Bracamonte ◽  
John S. Wilson ◽  
Joao S. Soares

Abstract The establishment of in vivo, noninvasive patient-specific, and regionally resolved techniques to quantify aortic properties is key to improving clinical risk assessment and scientific understanding of vascular growth and remodeling. A promising and novel technique to reach this goal is an inverse finite element method (FEM) approach that utilizes magnetic resonance imaging (MRI)-derived displacement fields from displacement encoding with stimulated echoes (DENSE). Previous studies using DENSE MRI suggested that the infrarenal abdominal aorta (IAA) deforms heterogeneously during the cardiac cycle. We hypothesize that this heterogeneity is driven in healthy aortas by regional adventitial tethering and interaction with perivascular tissues, which can be modeled with elastic foundation boundary conditions (EFBCs) using a collection of radially oriented springs with varying stiffness with circumferential distribution. Nine healthy IAAs were modeled using previously acquired patient-specific imaging and displacement fields from steady-state free procession (SSFP) and DENSE MRI, followed by assessment of aortic wall properties and heterogeneous EFBC parameters using inverse FEM. In contrast to traction-free boundary condition, prescription of EFBC reduced the nodal displacement error by 60% and reproduced the DENSE-derived heterogeneous strain distribution. Estimated aortic wall properties were in reasonable agreement with previously reported experimental biaxial testing data. The distribution of normalized EFBC stiffness was consistent among all patients and spatially correlated to standard peri-aortic anatomical features, suggesting that EFBC could be generalized for human adults with normal anatomy. This approach is computationally inexpensive, making it ideal for clinical research and future incorporation into cardiovascular fluid–structure analyses.


Perfusion ◽  
2018 ◽  
Vol 34 (3) ◽  
pp. 225-230 ◽  
Author(s):  
Kamran Hassani ◽  
Alireza Karimi ◽  
Ali Dehghani ◽  
Ali Tavakoli Golpaygani ◽  
Hamed Abdi ◽  
...  

Object: Mitral regurgitation (MR) is a condition in which the mitral valve does not prevent the reversal of blood flow from the left ventricle into the left atrium. This study aimed at numerically developing a model to mimic MR and poor leaflet coaptation and also comparing the performance of a normal mitral valve to that of the MR conditions at different gap junctions of 1, 3 and 5 mm between the anterior and posterior leaflets. Results: The results revealed no blood flow to the left ventricle when a gap between the leaflets was 0 mm. However, MR increased this blood flow, with increases in the velocity and pressure within the atrium. However, the pressure within the aorta did not vary meaningfully (ranging from 22 kPa for a ‘healthy’ model to 25 kPa for severe MR). Conclusions: The findings from this study have implications not only for understanding the changes in pressure and velocity as a result of MR in the ventricle, atrium or aorta, but also for the development of a computational model suitable for clinical translation when diagnosing and determining treatment for MR.


Author(s):  
Daniela Faas ◽  
Christine Buffinton ◽  
David Sedmera

Changes in mechanical loading in the developing heart produce changes in morphology and mechanical material properties [1–3]. Understanding the relationship of these changes to mechanical stress and strain in the left ventricle requires a geometrically accurate model of the entire ventricle including the trabecular pattern and material property, boundary condition, and loading specification. A 3D reconstruction and finite element technique were developed to reconstruct the heart from serial confocal sections and calculate stress and strain distributions over the volume for the passive state. Control hearts and two treatments, pressure overload and pressure underload, were modeled. The results show that stresses in the trabeculae are much larger than those in the ventricular walls. Strains in the pressure-overloaded hearts were significantly smaller than in control or underloaded, indicating the stiffer material properties more than compensate for the increased internal pressure.


Sign in / Sign up

Export Citation Format

Share Document