Domain Evolution of Herringbone Structures in Ferroelectric Single Crystals

Author(s):  
N. T. Tsou ◽  
J. E. Huber

The microstructure of a ferroelectric single crystal is significantly affected by applied loads. Domains evolve through equilibrium states, following a route that minimizes the overall energy. The herringbone pattern is one of the most widely observed domain structures in ferroelectric crystals. In this work, the evolution of four types of herringbone pattern in the tetragonal crystal system is studied by using a variational method. These four herringbone patterns are periodic rank-2 laminates which satisfy compatibility across every domain wall. The unit cell of periodic structure dictates a set of domain walls whose positions may vary while maintaining the same topology. The model allows for a crystal with one type of herringbone domain pattern to switch to another pattern through “pivot states”. In this study, a domain evolution map showing all paths between the four types of rank-2 herringbone pattern and their pivot states is developed. Hysteresis loops such as those observed in ferroelectric single crystals subjected to variety of loads are reproduced.

1997 ◽  
Vol 12 (9) ◽  
pp. 2366-2373 ◽  
Author(s):  
K. Parlinski ◽  
Y. Kawazoe

A model of lead phosphate, which describes the rhombohedral-monoclinic phase transition, is used to form domain patterns in the annealing process. The obtained domain structures show W and W′ types of domain walls in agreement with the stress-free laws proposed in Sapriel's theory. The observed W domain walls are parallel to the ternary symmetry axis, while the W′ ones are tilted with respect to the same axis. The antiphase domain walls take no preferential orientations, and remain parallel to the ternary axis. The calculated density of the potential energy of the domain wall of type W is estimated to be Edw = 49 K/Å2 at T = 300 K.


2020 ◽  
Vol 8 (21) ◽  
pp. 7234-7243
Author(s):  
Zeng Luo ◽  
Zenghui Liu ◽  
David Walker ◽  
Steven Huband ◽  
Pam A. Thomas ◽  
...  

Multi-scale domain structures in the BiScO3–PbTiO3 single crystal are imagined and analyzed by birefringence imaging microscopy (BIM) and piezoresponse force microscopy (PFM), revealing the local distortion in the vicinity of the domain walls.


2021 ◽  
Vol 54 (6) ◽  
Author(s):  
Mykola Shopa ◽  
Nazar Ftomyn ◽  
Yaroslav Shopa

A high-accuracy polarimetric technique has been used for the characterization of a lead germanate ferroelectric single crystal. The measurement results of the linear and circular birefringence in the [010] direction at a wavelength of 633 nm under the influence of an electric field are presented. Gyration–electric field hysteresis loops at alternative crystal positions in the polarization system have been used to determine the ellipticity of the eigenwaves. A temperature dependence of the gyration tensor component g 11 in the temperature range of 300–450 K was found.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Joshua C. Agar ◽  
Brett Naul ◽  
Shishir Pandya ◽  
Stefan van der Walt ◽  
Joshua Maher ◽  
...  

Abstract The ability to manipulate domains underpins function in applications of ferroelectrics. While there have been demonstrations of controlled nanoscale manipulation of domain structures to drive emergent properties, such approaches lack an internal feedback loop required for automatic manipulation. Here, using a deep sequence-to-sequence autoencoder we automate the extraction of latent features of nanoscale ferroelectric switching from piezoresponse force spectroscopy of tensile-strained PbZr0.2Ti0.8O3 with a hierarchical domain structure. We identify characteristic behavior in the piezoresponse and cantilever resonance hysteresis loops, which allows for the classification and quantification of nanoscale-switching mechanisms. Specifically, we identify elastic hardening events which are associated with the nucleation and growth of charged domain walls. This work demonstrates the efficacy of unsupervised neural networks in learning features of a material’s physical response from nanoscale multichannel hyperspectral imagery and provides new capabilities in leveraging in operando spectroscopies that could enable the automated manipulation of nanoscale structures in materials.


1993 ◽  
Vol 310 ◽  
Author(s):  
S. Wang ◽  
M. Dudley ◽  
L.K. Cheng ◽  
J.D. Bierlein ◽  
W. Bindloss

AbstractThe application of synchrotron white beam X-ray topography to the study of ferroelectric domain structures in hydrothermally grown potassium titanyl phosphate (KTiOPO4: KTP) single crystals is reported. The domain walls can be exclusively imaged on topographs with selected diffraction vectors and X-ray wavelengths, while images of other defects, such as dislocations, inclusions and surface scratches, can be simultaneously made very diffuse. The topographic images correspond well with electrostatic toning images. X-ray topography readily reveals the three dimensional shapes of the domain walls. There are two contributions to domain wall contrast: one is fringe-like which can be interpreted in terms of the dynamical theory of X-ray diffraction, and the other is diffuse strain contrast arising from long range strain associated with the wall. These two contributions can be observed simultaneously or separately depending on the diffraction conditions. The long range strain is thought to be associated with the curvature of the domain walls. It appears that the main components of the displacement field associated with this strain are directed approximately perpendicular to the domain wall.


Author(s):  
Sonoko Tsukahara ◽  
Tadami Taoka ◽  
Hisao Nishizawa

The high voltage Lorentz microscopy was successfully used to observe changes with temperature; of domain structures and metallurgical structures in an iron film set on the hot stage combined with a goniometer. The microscope used was the JEM-1000 EM which was operated with the objective lens current cut off to eliminate the magnetic field in the specimen position. Single crystal films with an (001) plane were prepared by the epitaxial growth of evaporated iron on a cleaved (001) plane of a rocksalt substrate. They had a uniform thickness from 1000 to 7000 Å.The figure shows the temperature dependence of magnetic domain structure with its corresponding deflection pattern and metallurgical structure observed in a 4500 Å iron film. In general, with increase of temperature, the straight domain walls decrease in their width (at 400°C), curve in an iregular shape (600°C) and then vanish (790°C). The ripple structures with cross-tie walls are observed below the Curie temperature.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Nara Lee ◽  
Jong Hyuk Kim ◽  
Dong Gun Oh ◽  
Hyun Jun Shin ◽  
Hwan Young Choi ◽  
...  

AbstractMagnetic properties can be manipulated to enhance certain functionalities by tuning different material processing parameters. Here, we present the controllable magnetization steps of hysteresis loops in double-perovskite single crystals of Eu2CoMnO6. Ferromagnetic order emerges below TC ≈ 122 K along the crystallographic c axis. The difficulty in altering Co2+ and Mn4+ ions naturally induces additional antiferromagnetic clusters in this system. Annealing the crystals in different gas environments modifies the mixed magnetic state, and results in the retardation (after O2-annealing) and bifurcation (after Ar-annealing) of the magnetization steps of isothermal magnetization. This remarkable variation offers an efficient approach for improving the magnetic properties of double-perovskite oxides.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
P. Yudin ◽  
K. Shapovalov ◽  
T. Sluka ◽  
J. Peräntie ◽  
H. Jantunen ◽  
...  

AbstractThe intrinsic mobile interfaces in ferroelectrics—the domain walls can drive and enhance diverse ferroelectric properties, essential for modern applications. Control over the motion of domain walls is of high practical importance. Here we analyse theoretically and show experimentally epitaxial ferroelectric films, where mobile domain walls coexist and interact with immobile growth-induced interfaces—columnar boundaries. Whereas these boundaries do not disturb the long-range crystal order, they affect the behaviour of domain walls in a peculiar selective manner. The columnar boundaries substantially modify the behaviour of non-ferroelastic domains walls, but have negligible impact on the ferroelastic ones. The results suggest that introduction of immobile boundaries into ferroelectric films is a viable method to modify domain structures and dynamic responses at nano-scale that may serve to functionalization of a broader range of ferroelectric films where columnar boundaries naturally appear as a result of the 3D growth.


RSC Advances ◽  
2016 ◽  
Vol 6 (54) ◽  
pp. 49060-49067 ◽  
Author(s):  
Micka Bah ◽  
Natalya Alyabyeva ◽  
Richard Retoux ◽  
Fabien Giovannelli ◽  
Mustapha Zaghrioui ◽  
...  

We reported self-organized and hierarchized domain structures on various length scales ranging from micrometer to nanometer scale in K0.5Na0.5NbO3 crystals.


Sign in / Sign up

Export Citation Format

Share Document