Interface Waves in Hybrid Metal-Composite Structures

Author(s):  
Mohammadreza Jahanbin ◽  
Sridhar Santhanam ◽  
Jeong-Beom Ihn

Damage nucleation and growth can be complex in hybrid structures composed of layers of metal and laminated composites. Presently there are limited reliable damage growth analytical and empirical methods to evaluate the bond integrity of such structures and to quantify the state of bonding in such joints. Depending on the geometry and accessibility of hybrid joints, ultrasonic nondestructive testing (NDT) techniques are available for inspection of these structures. However there are some limitations for the usage of typical bulk or guided waves to quantify the integrity of bondline in hybrid structures. This work suggests the use of specific forms of ultrasonic guided waves that propagate along the bondline of these hybrid structures. This study is dedicated to modeling of interface guided waves for the purpose of disbond crack damage assessment. The nature of interface waves is discussed and the numerical simulation based on the material properties and geometries of hybrid interfaces as well as composite stacking sequence is verified. A finite element model of a hybrid structure with isotropic and anisotropic multilayer composites is constructed. The behavior of interface guided waves influenced by disbond cracks at free edges of hybrid bonded joints is numerically studied. The propagation characteristics of interface waves is shown to be sensitive to the size of disbond cracks. The velocity of interface waves is shown to have an inverse relation to the disbond damage size. Results show the speed is also a function of the interfacing ply orientation at the bondline. These results suggest that interface waves can be used to monitor the condition of bonded joints in hybrid structures.

Author(s):  
Noah Ledford ◽  
Michael May

Joint failure plays a key role in determining structural stability and crash or impact response. Characterizing the joints at high loading rates is challenging as oscillations are often overlaid on the measured data, making interpretation of the results more difficult. This paper builds upon the experimental testing three different mixed-material joints using a split-Hopkinson tension bar. The correction proposed in this work is verified using a finite element model of the entire testing system. The modeling efforts also investigate the differences in a specimen only model and a model including the entire testing system. The failure mechanisms of bolted and bonded joints are investigated, where the substrate stress state is found to play a large role in determining the failure mode for bolted joints. This work lays the foundations needed to investigate the mixed-material bolted and bonded joints in detail.


1996 ◽  
Vol 24 (4) ◽  
pp. 339-348 ◽  
Author(s):  
R. M. V. Pidaparti

Abstract A three-dimensional (3D) beam finite element model was developed to investigate the torsional stiffness of a twisted steel-reinforced cord-rubber belt structure. The present 3D beam element takes into account the coupled extension, bending, and twisting deformations characteristic of the complex behavior of cord-rubber composite structures. The extension-twisting coupling due to the twisted nature of the cords was also considered in the finite element model. The results of torsional stiffness obtained from the finite element analysis for twisted cords and the two-ply steel cord-rubber belt structure are compared to the experimental data and other alternate solutions available in the literature. The effects of cord orientation, anisotropy, and rubber core surrounding the twisted cords on the torsional stiffness properties are presented and discussed.


2008 ◽  
Author(s):  
Padma Kumar Puthillath ◽  
Fei Yan ◽  
Clifford J. Lissenden ◽  
Joseph L. Rose ◽  
Donald O. Thompson ◽  
...  

2021 ◽  
Vol 3 (9) ◽  
Author(s):  
Sadik Omairey ◽  
Nithin Jayasree ◽  
Mihalis Kazilas

AbstractThe increasing use of fibre reinforced polymer composite materials in a wide range of applications increases the use of similar and dissimilar joints. Traditional joining methods such as welding, mechanical fastening and riveting are challenging in composites due to their material properties, heterogeneous nature, and layup configuration. Adhesive bonding allows flexibility in materials selection and offers improved production efficiency from product design and manufacture to final assembly, enabling cost reduction. However, the performance of adhesively bonded composite structures cannot be fully verified by inspection and testing due to the unforeseen nature of defects and manufacturing uncertainties presented in this joining method. These uncertainties can manifest as kissing bonds, porosity and voids in the adhesive. As a result, the use of adhesively bonded joints is often constrained by conservative certification requirements, limiting the potential of composite materials in weight reduction, cost-saving, and performance. There is a need to identify these uncertainties and understand their effect when designing these adhesively bonded joints. This article aims to report and categorise these uncertainties, offering the reader a reliable and inclusive source to conduct further research, such as the development of probabilistic reliability-based design optimisation, sensitivity analysis, defect detection methods and process development.


Author(s):  
B. Elavarasan ◽  
G. Muhiuddin ◽  
K. Porselvi ◽  
Y. B. Jun

AbstractHuman endeavours span a wide spectrum of activities which includes solving fascinating problems in the realms of engineering, arts, sciences, medical sciences, social sciences, economics and environment. To solve these problems, classical mathematics methods are insufficient. The real-world problems involve many uncertainties making them difficult to solve by classical means. The researchers world over have established new mathematical theories such as fuzzy set theory and rough set theory in order to model the uncertainties that appear in various fields mentioned above. In the recent days, soft set theory has been developed which offers a novel way of solving real world issues as the issue of setting the membership function does not arise. This comes handy in solving numerous problems and many advancements are being made now-a-days. Jun introduced hybrid structure utilizing the ideas of a fuzzy set and a soft set. It is to be noted that hybrid structures are a speculation of soft set and fuzzy set. In the present work, the notion of hybrid ideals of a near-ring is introduced. Significant work has been carried out to investigate a portion of their significant properties. These notions are characterized and their relations are established furthermore. For a hybrid left (resp., right) ideal, different left (resp., right) ideal structures of near-rings are constructed. Efforts have been undertaken to display the relations between the hybrid product and hybrid intersection. Finally, results based on homomorphic hybrid preimage of a hybrid left (resp., right) ideals are proved.


Materials ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3289
Author(s):  
Tomasz Kwapiński ◽  
Marcin Kurzyna

Mid-gap 1D topological states and their electronic properties on different 2D hybrid structures are investigated using the tight binding Hamiltonian and the Green’s function technique. There are considered straight armchair-edge and zig-zag Su–Schrieffer–Heeger (SSH) chains coupled with real 2D electrodes which density of states (DOS) are characterized by the van Hove singularities. In this work, it is shown that such 2D substrates substantially influence topological states end evoke strong asymmetry in their on-site energetic structures, as well as essential modifications of the spectral density function (local DOS) along the chain. In the presence of the surface singularities the SSH topological state is split, or it is strongly localized and becomes dispersionless (tends to the atomic limit). Additionally, in the vicinity of the surface DOS edges this state is asymmetrical and consists of a wide bulk part together with a sharp localized peak in its local DOS structure. Different zig-zag and armachair-edge configurations of the chain show the spatial asymmetry in the chain local DOS; thus, topological edge states at both chain ends can appear for different energies. These new effects cannot be observed for ideal wide band limit electrodes but they concern 1D topological states coupled with real 2D hybrid structures.


2015 ◽  
Author(s):  
Pierre-Claude Ostiguy ◽  
Nicolas Quaegebeur ◽  
Maxime Bilodeau ◽  
Patrice Masson

Sign in / Sign up

Export Citation Format

Share Document