Design of Bio-Inspired Mobile Robot Using Piezoelectric Transducers As Drives

Author(s):  
Jovana Jovanova ◽  
Filip Dobrivojevski ◽  
Martina Dimoska

This paper focuses on the design and development of a bio-inspired mobile robot using piezoelectric transducers as drives. The design of the device aimed to imitate the trajectory movement of a crawl-like animal. Design constraints as producing controlled movement with piezoelectric transducer, as well as the combination of multiple piezoelectric patches into one mobile robot are presented in their practical aspects. The robot uses 2 piezoelectric transducers as main drives, but also as main structural components of the device. The patches are connected with a thin light rod, and the kinematic of movement is achieved with 4 tiny wooden legs connected on each of the patches. The project investigates the possibility and effectiveness of the piezoelectric transducers for movement of the bio-inspired mobile robot. From conceptual development, to the mechanical design and control, the mobile robot is used to test different trajectories of movement. Ni RIO Evaluation kit has been incorporated as a real-time and FPGA control platform for the mobile robot while using Labview programing environment. To accomplish complex trajectories of movement the velocity of the robot was measured for straight line and rotation of the robot.

Author(s):  
Hernán Gonzalez Acuña ◽  
Alfonso René Quintero Lara ◽  
Ricardo Ortiz Guerrero ◽  
Jairo de Jesús Montes Alvarez ◽  
Hernando González Acevedo ◽  
...  

This chapter describes a Mechatronics Design methodology applied to the design of a mobile robot to climb vertical surfaces. The first part of this chapter reviews different ways to adhere to vertical surfaces and shows some examples developed by different research groups. The second part presents the stages of Mechatronics design methodology used in the design, including mechanical design, electronics design, and control design. These stages describe the most important topics for optimally successful design. The final part provides results that were obtained in the design process and construction of the robot. Finally, the conclusions of this research work are presented.


2011 ◽  
Vol 30 (13) ◽  
pp. 1609-1626 ◽  
Author(s):  
Shuro Nakajima

There is a strong demand in many fields for practical robots, such as a porter robot and a personal mobility robot, that can move over rough terrain while carrying a load horizontally. We have developed a robot, called RT-Mover, which shows adequate mobility performance on targeted types of rough terrain. It has four drivable wheels and two leg-like axles but only five active shafts. A strength of this robot is that it realizes both a leg mode and a wheel mode in a simple mechanism. In this paper, the mechanical design concept is discussed. With an emphasis on minimizing the number of drive shafts, a mechanism is designed for a four-wheeled mobile body that is widely used in practical locomotive machinery. Also, strategies for moving on rough terrain are proposed. The kinematics, stability, and control of RT-Mover are also described in detail. Some typical cases of rough terrain for wheel mode and leg mode are selected, and the robot’s ability of locomotion is assessed through simulations and experiments. In each case, the robot is able to move over rough terrain while maintaining the horizontal orientation of its platform.


2010 ◽  
Vol 166-167 ◽  
pp. 173-178 ◽  
Author(s):  
Ioan Doroftei ◽  
Bogdan Stirbu

One of the main issues of a mobile robot is to move in tight areas, to avoid obstacles, finding its way to the next location. These capabilities mainly depend on the wheels design. An omni-directional drive mechanism is very attractive because it guarantees a very good mobility in such cases. This paper provides some information about the mechanical design of an omni-directional robot, as well as about its control. This report is the result of the cooperation between researchers from Mechanical Engineering and Electrical Engineering Faculties, at “Gh. Asachi” Technical University of Iasi, Romania.


Procedia CIRP ◽  
2016 ◽  
Vol 56 ◽  
pp. 412-415 ◽  
Author(s):  
Tianran Peng ◽  
Jun Qian ◽  
Bin Zi ◽  
Jiakui Liu ◽  
Xingwei Wang

2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Soheil Habibian ◽  
Mehdi Dadvar ◽  
Behzad Peykari ◽  
Alireza Hosseini ◽  
M. Hossein Salehzadeh ◽  
...  

AbstractRescue robots are expected to carry out reconnaissance and dexterity operations in unknown environments comprising unstructured obstacles. Although a wide variety of designs and implementations have been presented within the field of rescue robotics, embedding all mobility, dexterity, and reconnaissance capabilities in a single robot remains a challenging problem. This paper explains the design and implementation of Karo, a mobile robot that exhibits a high degree of mobility at the side of maintaining required dexterity and exploration capabilities for urban search and rescue (USAR) missions. We first elicit the system requirements of a standard rescue robot from the frameworks of Rescue Robot League (RRL) of RoboCup and then, propose the conceptual design of Karo by drafting a locomotion and manipulation system. Considering that, this work presents comprehensive design processes along with detail mechanical design of the robot’s platform and its 7-DOF manipulator. Further, we present the design and implementation of the command and control system by discussing the robot’s power system, sensors, and hardware systems. In conjunction with this, we elucidate the way that Karo’s software system and human–robot interface are implemented and employed. Furthermore, we undertake extensive evaluations of Karo’s field performance to investigate whether the principal objective of this work has been satisfied. We demonstrate that Karo has effectively accomplished assigned standardized rescue operations by evaluating all aspects of its capabilities in both RRL’s test suites and training suites of a fire department. Finally, the comprehensiveness of Karo’s capabilities has been verified by drawing quantitative comparisons between Karo’s performance and other leading robots participating in RRL.


Robotics ◽  
2013 ◽  
pp. 743-753
Author(s):  
Hernán González Acuña ◽  
Alfonso René Quintero Lara ◽  
Ricardo Ortiz Guerrero ◽  
Jairo de Jesús Montes Alvarez ◽  
Hernando González Acevedo ◽  
...  

This chapter describes a Mechatronics Design methodology applied to the design of a mobile robot to climb vertical surfaces. The first part of this chapter reviews different ways to adhere to vertical surfaces and shows some examples developed by different research groups. The second part presents the stages of Mechatronics design methodology used in the design, including mechanical design, electronics design, and control design. These stages describe the most important topics for optimally successful design. The final part provides results that were obtained in the design process and construction of the robot. Finally, the conclusions of this research work are presented.


2016 ◽  
Vol 4 (2) ◽  
pp. 1-16
Author(s):  
Ahmed S. Khusheef

 A quadrotor is a four-rotor aircraft capable of vertical take-off and landing, hovering, forward flight, and having great maneuverability. Its platform can be made in a small size make it convenient for indoor applications as well as for outdoor uses. In model there are four input forces that are essentially the thrust provided by each propeller attached to each motor with a fixed angle. The quadrotor is basically considered an unstable system because of the aerodynamic effects; consequently, a close-loop control system is required to achieve stability and autonomy. Such system must enable the quadrotor to reach the desired attitude as fast as possible without any steady state error. In this paper, an optimal controller is designed based on a Proportional Integral Derivative (PID) control method to obtain stability in flying the quadrotor. The dynamic model of this vehicle will be also explained by using Euler-Newton method. The mechanical design was performed along with the design of the controlling algorithm. Matlab Simulink was used to test and analyze the performance of the proposed control strategy. The experimental results on the quadrotor demonstrated the effectiveness of the methodology used.


2019 ◽  
pp. 41-48
Author(s):  
Yan Guojun ◽  
Oleksiy Kozlov ◽  
Oleksandr Gerasin ◽  
Galyna Kondratenko

The article renders the special features of the design of a tracked mobile robot (MR) for moving over inclined ferromagnetic surfaces while performing specified technological operations. There is conducted a synthesis of the functional structure and selective technological parameters (such as control coordinates) of the computerized monitoring and control system (CMCS) intended for use with this MR. Application of the CMCS with the proposed functional structure allows substantially increasing the accuracy of the MR monitoring and control, which in turn provides for a considerable enhancement in the quality and economic efficiency of the operations on processing of large ferromagnetic surfaces.


Sign in / Sign up

Export Citation Format

Share Document