Temperature Dependence of Friction Coefficient in Ultrahigh Vacuum for Hydrogenated Amorphous Carbon Coating

Author(s):  
Masanori Iwaki ◽  
Thierry Le Mogne ◽  
Julien Fontaine ◽  
Jean-Michel Martin

Among diamond-like carbon (DLC) coatings, hydrogenated amorphous carbon (a-C:H) coatings are of great interest since some of them may exhibit coefficients of friction in the millirange, so-called “superlow friction” in ultrahigh vacuum. However, there are still many points to be clarified and improved to employ them as solid lubricant for actual vacuum applications. For example, in space environment solid lubricants are required to function at both low and high temperature ranging from −150 to 100°C. To apply them as solid lubricant in such an extreme environment, it is necessary to know the evolution of the tribological behavior in temperature, leading to their application limit. Furthermore, tribological behavior of a-C:H coatings is known to depend on tribochemistry and on mechanical properties like viscoplasticity. Since both could be affected by temperature, a better understanding of superlow friction mechanisms is expected from experiments at various temperatures. In this present work, pin-on-disk reciprocating friction tests were conducted at various temperature conditions ranging from −130 to 300°C under ultrahigh vacuum (10−7Pa) to study the effect of temperature on the coefficient of friction of an a C:H coated flat mated against steel (AISI 52100) pins. For all temperatures, superlow friction regime could be reached, as it was observed usually at room temperature for this sample. However, an effect of temperature is evidenced on the duration of “running-in” phase, i.e. the number of cycles required to reach a superlow friction regime. The duration becomes shorter at higher temperatures and longer at lower temperatures. Also, the application limit in temperature is found between 200 and 300°C, at which the friction coefficient slowly increases after running-in, to reach values above 0.01. In light of these results, the mechanisms of superlow friction are discussed in terms of tribochemistry and mechanical properties of the coating.

Author(s):  
Julien Fontaine

Some hydrogenated amorphous carbon (a-C:H) films have the peculiarity to exhibit coefficients of friction in the millirange, known as “superlow friction”, under inert environments like dry nitrogen or high vacuum. However, this “superlubricity” is only observed for some coatings and sometimes for very short duration. The role of tribofilm in the superlow friction regime observed on various a-C:H films sliding against steel pins has been investigated by performing experiments in ultra-high vacuum and hydrogen ambient. Tribofilm build-up appears to be controlled by interactions with oxide layers. Then, evolutions of the tribofilm will depend both on the composition of a-C:H film and on interactions with environment, through tribochemical reactions. Furthermore, the mechanical properties of the films are correlated with the achievement of superlow friction. All these results suggest that surface rheological properties are of critical importance in reaching superlow friction regime with a-C:H films.


2021 ◽  
Vol 16 (6) ◽  
pp. 905-910
Author(s):  
Yong Seob Park ◽  
Young-Baek Kim ◽  
Sung Hwan Hwang ◽  
Jaehyeong Lee

Generally, hydrogenated amorphous carbon (a-C:H) has been shown to have a low friction coefficient, high hardness, and low abrasive wear rate. In this study, Pd doped hydrogenated amorphous carbon (a-C:H:Pd) fabricated by the closed-field unbalanced magnetron sputtering (CFUBMS) system with two targets of carbon and palladium in Ar/C2H2 plasma. The tribological and lubricant characteristics for a-C:H:Pd fabricated with various DC bias voltage from 0 to −200 V were investigated. We obtained a hardness up to 27.5 GPa and friction coefficient lower than 0.1. The atomic percentage of Pd related to the lubricant properties increased up to 22% at −200 V. In the results, the Pd doping in the a-C:H films improved the tribological and lubricant properties. The friction coefficient value of a-C:H:Pd films was decreased, the hardness and elastic modulus were increased, and also the adhesion properties was improved with the increase of negative DC bias voltage.


Coatings ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 455
Author(s):  
Armin Seynstahl ◽  
Sebastian Krauß ◽  
Erik Bitzek ◽  
Bernd Meyer ◽  
Benoit Merle ◽  
...  

Depositing MoS2 coatings for industrial applications involves rotating the samples during the PVD magnetron sputtering process. Here, we show that a 3-fold substrate rotation, along a large target–substrate distance given by the deposition unit, introduces porosity inside the coatings. The mechanical properties and wear behavior strongly correlate with the degree of porosity, which, in turn, depends on the temperature and the rotational speed of the substrate. Ball-on-disk tests and nanoindentation wear experiments show a consistent change in tribological behavior; first, a compaction of the porous structure dominates, followed by wear of the compacted material. Compaction was the main contributor to the volume loss during the running-in process. Compared to a dense coating produced without substrate rotation, the initially porous coatings showed lower hardness and a distinct running-in behavior. Tribological lifetime experiments showed good lubrication performance after compaction.


Sign in / Sign up

Export Citation Format

Share Document