friction regime
Recently Published Documents


TOTAL DOCUMENTS

57
(FIVE YEARS 15)

H-INDEX

14
(FIVE YEARS 1)

2022 ◽  
Author(s):  
Robert Ian Taylor ◽  
Ian Sherrington

Abstract There is a strong focus on improving the energy efficiency of machines. Over the last 20-30 years, one way to improve energy efficiency has been to reduce lubricant viscosity. This also has the effect of leading to thinner oil films between the machine’s moving surfaces and is likely to lead to increased mixed/boundary friction. Accurately predicting friction in the mixed/boundary friction regime is therefore becoming of great importance. The work reported here suggests that commonly used asperity friction models significantly underestimate friction in the mixed/boundary friction, and a new model, based on a logistic curve fit, gives a better estimate of mixed/boundary friction, provides good agreement with experimental friction data (from Mini Traction Machine experiments), and is much more straightforward for engineers and tribologists to apply for the estimation of mixed/boundary friction losses.


Lubricants ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 2
Author(s):  
Jun Zhao ◽  
Yijiang Liu ◽  
Dengyu Liu ◽  
Yanfei Gu ◽  
Rao Zheng ◽  
...  

Graphite-based composites are well recognized as ideal functional materials in mechanical seals, bearings of canned pumps, and electrical contact systems because of their outstanding self-lubricating ability, thermostability, and chemical stability. Working in harsh conditions is a huge challenge for the graphite materials, and their tribological properties and wear mechanisms are not well studied. In this study, the tribological performance of metal-impregnated graphite, resin-impregnated graphite, and non-metal-impregnated graphite under high temperature and high load are studied using a ball-on-disc tribometer. The results show that the metal-impregnated graphite (Metal-IG) has a stable friction regime and exhibits better anti-friction and anti-wear properties than that of resin-impregnated graphite (Resin-IG) and non-impregnated graphite (Non-IG) under extreme pressure (200~350 MPa) and high temperature (100–350 °C). The Metal-IG and Resin-IG can reduce the wear depth by 60% and 80%, respectively, when compared with Non-IG substrate. The impregnated materials (metal or resin) can enhance the strength of the graphite matrix and improve the formation of graphite tribofilm on the counterpart surfaces. Friction-induced structural ordering of graphite and slight oxidation of metal in the formed mechanically mixed layer is also beneficial for friction and wear reduction. This study demonstrates the tribological characteristics of impregnated graphite under harsh conditions and provides the experimental basis for the advanced usage of high-reliability and self-lubrication graphite composites.


Author(s):  
Owen Brazil ◽  
John B. Pethica ◽  
George M. Pharr

We report microscale friction experiments for diamond/metal and diamond/silica contacts under gigapascal contact pressures. Using a new nanoprobe technique that has a sufficient dynamic range of force and stiffness, we demonstrate the processes involved in the transition from purely interface sliding at the nanoscale to the situation where at least one of the sliding bodies undergoes some plastic deformation. For sliding of micrometre-sized tips on metallic substrates, additional local plastic yielding of the substrate resulting from tangential tractions causes the tip to sink into the surface, increasing the contact area in the direction of loading and resulting in a static friction coefficient higher than the kinetic during ploughing. This sink-in is largely absent in fused silica, and no friction drop is observed, along with lower friction in general. The transition from sink-in within the static friction regime to ploughing in the sliding friction regime is mediated by failure of the contact interface, indicated by a sharp increase in energy dissipation. At lower contact pressures, the elastic interfacial sliding behaviour characteristic of scanning probe or surface force apparatus experiments is recovered, bridging the gap between the exotic realm of nanotribology and plasticity-dominated macroscale friction.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Elena Zadorozhnaya ◽  
Vladislav Hudyakov ◽  
Elizaveta Polyacko ◽  
Igor Dolgushin

Purpose The reliability of various mechanisms and machines is determined by the durability of tribo-units, which must ensure operation at high temperatures and an extended range of rotor shaft speeds. The best performance of the bearing assembly is achieved with hydrodynamic lubrication, which depends on optimal operating conditions and temperature conditions. The purpose of this paper is determining the thermal state of the turbocharger (TCR) bearings. Design/methodology/approach The simulation was carried out in the ANSYS Fluent software package. The boundary conditions for the calculation were obtained from experimental data. The experiments were carried out at a specialized stand created at the scientific and production association “Turbotekhnika”. Findings The result of the simulation was the determination of temperatures and thermal fields in the TCR housing. The data obtained testify to the uneven thermal loading of the bearings. When calculating the dynamics of the rotor, transient modes are considered. The results are the trajectories of the rotor in the space of the bearing clearance. The thickness of the lubricating layer was calculated as a parameter that determines the hydrodynamic friction regime. The thermal state of the TCR elements was evaluated at all the considered rotor speeds. The flexible axis of the rotor was obtained at different speeds. Originality/value The paper presents a model of heat transfer in a TCR housing and rotor dynamics, based on numerical methods, which will help in the design of TCRs and journal bearings.


Author(s):  
A.Yu. Popovskii ◽  
B.A. Altoiz ◽  
A.F. Butenko ◽  
A.K. Kopeyka ◽  
Laurencas Raslavicius

The lubricating characteristics of ultrathin interlayers of bio-oil RMO made from coastal algae P.Moriformis are investigated in this work. One of the most important qualities of the oil is its lubricity of the friction surfaces. It determines the possibility of formation of a stable separating film between contact surfaces, with orientational ordering in wall adjacent layers, with the strength value required in the boundary friction regime. The structural characteristics of such epitropic-liquid crystal (ELC) layers are essential when choosing a lubricant. Static friction pair was studied by the optical method of admixtured absorption dichroism. It was found that the value of the order parameter of ELC layer and its equilibrium thickness are much higher in compare with the layers of aliphatic hydrocarbons, which are the basis of modern mineral lubricants. The rheological characteristics of ultrathin interlayers were studied in a dynamic triad of friction. Processing of the effective viscosity coefficient dependence on the shear rate, interlayer thickness and temperature allowed us to estimate the value of equilibrium thickness of the ELC layer, which coincides with the results of optical measurements. The marked structural peculiarities of the ELC in the biooil interlayers are conditioned with the formation of molecular associates of oleic acid, which is the main component of studied oil.


Materials ◽  
2021 ◽  
Vol 14 (17) ◽  
pp. 4836
Author(s):  
Alice O. Mateescu ◽  
Gheorghe Mateescu ◽  
Adriana Balan ◽  
Catalin Ceaus ◽  
Ioan Stamatin ◽  
...  

This work presents preliminary results regarding improving the mechanical, wear and protective properties (hardness, coefficient of friction, corrosion resistance) of AISI 304 stainless steel surfaces by open atmosphere cold plasma surface treatment method. Comparative evaluations of the morphological, corrosion resistance, mechanical and tribological properties for different periods of treatment (using N2 gas for cold plasma generation in an open atmosphere) were performed. AFM surface analyses have shown significant surface morphology modifications (average roughness, FWHM, surface skewness and kurtosis coefficient) of the treated samples. An improved corrosion resistance of the N2 treated surfaces in open atmosphere cold plasma could be observed using electrochemical corrosion tests. The mechanical tests have shown that the surface hardness (obtained by instrumented indentation) is higher for the 304 stainless steel samples than it is for the un-treated surface, and it decreases gradually for higher penetration depths. The kinetic coefficient of friction (obtained by ball-on-disk wear tests) is significantly lower for the treated samples and increases gradually to the value of the un-treated surface. The low friction regime length is dependent on the surface treatment period, with a longer cold plasma nitriding process leading to a significantly better wear behavior.


Author(s):  
K. Bobzin ◽  
T. Brögelmann ◽  
C. Kalscheuer ◽  
M. Thiex

AbstractWithin this study, self-lubricating and triboactive (Cr,Al)N+Mo:S coatings were developed and investigated for the deposition on components in a low-temperature physical vapor deposition (PVD) hybrid process. Therefore, direct current magnetron sputtering (dcMS) and high power pulse magnetron sputtering (HPPMS) PVD were combined by using an industrial coating machine. Hereby, it was possible to deposit dense and smooth triboactive, self-lubricating nitride coatings with different chemical compositions and architectures on 16MnCr5E samples. Two coating architectures, a matrix monolayer and a graded coating structure, were developed to evaluate the effect on the tribological behavior. The morphology and coating thickness were analyzed by means of scanning electron microscopy (SEM). Furthermore, the indentation hardness and modulus of indentation as well as the compound adhesion between substrate materials and coating were analyzed. Tribological analyses of (Cr,Al)N+Mo:S-coated and uncoated samples were conducted under fluid-free friction regime at room temperature T = (20 ± 3) °C, a velocity v = 0.1 m/s and a distance s = 1000 m by varying the Hertzian contact pressure from 400 MPa ≤ pH ≤ 1300 MPa against steel counterparts, 100Cr6, in a pin-on-disk (PoD) tribometer. The graded coating architecture of (Cr,Al)N+Mo:S enabled a significant wear and friction reduction. Furthermore, Raman analyses prove the formation of solid lubrication tribofilm containing MoS2, MoO3 MoO2 and MoxOy at the toplayer of a graded (Cr,Al)N+Mo:S coating, which are responsible for the improved tribological behavior.


Materials ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1148
Author(s):  
Min Cheol Kang ◽  
Hai Woong Park ◽  
Arnaud Caron

We investigate the copper-wear-protective effects of graphene and boron nitride in single asperity sliding contact with a stiff diamond-coated atomic force microscopy (AFM)-tip. We find that both graphene and boron nitride retard the onset of wear of copper. The retardment of wear is larger with boron nitride than with graphene, which we explain based on their respective out-of-plane stiffnesses. The wear protective effect of boron nitride comes, however, at a price. The out-of-plane stiffness of two-dimensional materials also determines their friction coefficient in a wear-less friction regime. In this regime, a higher out-of-plane stiffness results in larger friction forces.


2021 ◽  
Vol 7 ◽  
Author(s):  
Laure Bouquerel ◽  
Nicolas Moulin ◽  
Sylvain Drapier

In the context of developing competitive liquid composites molding processes for primary aircraft structures, modeling the forming stage of automatically-placed initially flat stacks of dry reinforcements is of great interest. In the case of HiTape®, a dry unidirectional carbon fiber reinforcement designed to achieve performances comparable to state-of-the-art pre-impregnated materials, the presence of a thermoplastic veil on each side of the material for both processing and mechanical purposes should also be considered when modeling forming in hot conditions. As a dry unidirectional reinforcement, HiTape® is expected to exhibit a transversely isotropic behavior. Computation cost and strong characterization challenges led us to model its behavior at the forming process temperature (above the thermoplastic veil melting temperature) through a homogeneous equivalent continuous medium exhibiting four ‘classical’ deformation modes and a specific structural mode, namely out-of-plane bending. The response of both single plies and stacks of HiTape® to this latter structural mode was characterized at the forming process temperature using a modified Peirce flexometer. Results on single plies showed a non-linear softening moment-curvature behavior and a corresponding flexural stiffness much lower than what can be inferred from continuum mechanics. Moreover, testing stacks revealed that the veil acts as a thin load transfer layer between the plies undergoing relative in-plane displacement, i.e. inter-ply sliding. This inter-ply response was then characterized separately at the forming process temperature thanks to a specific method relying on a pull-through test. Experiments performed at pressures and speeds representative of the forming stage revealed that a hydrodynamic lubricated friction regime predominates, i.e. a linearly increasing relationship between the friction coefficient and the modified Hersey number. From an industrial point of view, high forming pressures and low speeds are therefore recommended to promote inter-ply slip to limit the occurrence of defects such as wrinkles.


2021 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Nuno J. Alves ◽  
Athanasios E. Tzavaras

<p style='text-indent:20px;'>This work establishes the relaxation limit from the bipolar Euler-Poisson system to the bipolar drift-diffusion system, for data so that the latter has a smooth solution. A relative energy identity is developed for the bipolar fluid models, and it is used to show that a dissipative weak solution of the bipolar Euler-Poisson system converges in the high-friction regime to a strong and bounded away from vacuum solution of the bipolar drift-diffusion system.</p>


Sign in / Sign up

Export Citation Format

Share Document