Nucleation and growth of InN by high-pressure chemical vapor deposition: Optical monitoring

Author(s):  
Vincent Woods ◽  
Jayantha Senawirante ◽  
Nikolaus Dietz
2006 ◽  
Vol 89 (11) ◽  
pp. 112119 ◽  
Author(s):  
M. Alevli ◽  
G. Durkaya ◽  
A. Weerasekara ◽  
A. G. U. Perera ◽  
N. Dietz ◽  
...  

APL Materials ◽  
2018 ◽  
Vol 6 (4) ◽  
pp. 046105 ◽  
Author(s):  
Xiaoyu Ji ◽  
Hiu Yan Cheng ◽  
Alex J. Grede ◽  
Alex Molina ◽  
Disha Talreja ◽  
...  

2006 ◽  
Vol 959 ◽  
Author(s):  
Ilyes Zahi ◽  
Hugues Vergnes ◽  
Brigitte Caussat ◽  
Alain Esteve ◽  
Mehdi Djafari Rouhani ◽  
...  

ABSTRACTWe present first results combining models at continuum and atomistic (DFT) levels to improve understanding of key mechanisms involved in silicon nanodots (NDs) synthesis on SiO2 by Low Pressure Chemical Vapor Deposition (LPCVD) from silane SiH4. In particular, by simulating an industrial LPCVD reactor using the CFD code Fluent, we find that the deposition time could be increased and then the reproducibility and uniformity of NDs deposition could be improved when highly diluting silane in a carrier gas. A consequence of this high dilution seems to be that the contribution to deposition of unsaturated species such as silylene SiH2 highly increases. This result is important since our first DFT calculations have shown that silicon chemisorption on silanol Si-OH or siloxane Si-O-Si bonds present on SiO2 substrates could only proceed from silylene (and probably from other unsaturated species). The silane saturated molecule could only contribute to NDs growth, i.e. silicon chemisorption on already deposited silicon bonds. Increasing silylene contribution to deposition in highly diluting silane could then also exalt silicon nucleation on SiO2 substrates and then increase NDs density.


2000 ◽  
Vol 648 ◽  
Author(s):  
M.P. Singh ◽  
S. Mukhopadhayay ◽  
Anjana Devi ◽  
S.A. Shivashankar

AbstractWe have studied the nucleation and growth of alumina by metalorganic chemical vapor deposition (MOCVD). The deposition of alumina films was carried out on Si(100) in a horizontal, hot-wall, low pressure chemical vapor deposition (CVD) reactor, using aluminum acetylacetonate{Al(acac)3}as the CVD precursor. We have investigated growth of alumina films as a function of different CVD parameters such as substrate temperature and total reactor pressure during film growth. Films were characterized by optical microscopy, X-ray diffractometry (XRD), scanning electron microscopy (SEM), cross-sectional SEM, and secondary ion mass spectrometry (SIMS) compositional depth profiling. The chemical analysis reveals that the carbon is present throughout the depth of the films.


Carbon ◽  
1995 ◽  
Vol 33 (2) ◽  
pp. 183-191 ◽  
Author(s):  
N. Nakao ◽  
K. Kitagawa ◽  
M. Sasaki ◽  
T. Hirai

Sign in / Sign up

Export Citation Format

Share Document