Thin film Ni-Si solid-state reactions: Phase formation sequence on amorphized Si

Author(s):  
Pierre Turcotte-Tremblay ◽  
Matthieu Guihard ◽  
Simon Gaudet ◽  
Martin Chicoine ◽  
Christian Lavoie ◽  
...  
1989 ◽  
Vol 148 ◽  
Author(s):  
F.-Y. Shiau ◽  
Y. A. Chang

ABSTRACTA fundamental and comprehensive approach has been taken to study Co//GaAs interfacial reactions, using phase diagram determination, bulk and thin-film diffusion couple studies, and electrical characterization. Phase formation sequences and interfacial morphologies are found to be similar in bulk and thin-film couples. Thermodynamic and kinetic analyses are used to rationalize the contact formations. The electrical properties of the contacts are correlated to the phase formation sequences and phase diagram information.


2017 ◽  
Vol 121 (24) ◽  
pp. 245311 ◽  
Author(s):  
E. Ghegin ◽  
Ph. Rodriguez ◽  
J. L. Lábár ◽  
M. Menyhárd ◽  
S. Favier ◽  
...  

Author(s):  
Yu.N. Makogon ◽  
O.P. Pavlova ◽  
G. Beddies ◽  
A.V. Mogilatenko ◽  
O.V. Chukhrai

2013 ◽  
Vol 344 ◽  
pp. 79-84
Author(s):  
S.I. Sidorenko ◽  
S.M. Voloshko ◽  
Yu.M. Мakogon ◽  
O.P. Pavlov ◽  
I.E. Kotenko ◽  
...  

By the methods of Auger-spectroscopy and mass-spectrometry of secondary ions, small-angle electron diffraction, X-ray and resistometry analyses the solid-state reactions in the Ti(5 nm)/ Ni(24 nm)/Si(001) thin film system at annealing in running nitrogen in the temperature interval of 723 – 1273 К are investigated. Regularities of phase transformations, consistency of solid-state reactions, layer-by-layer redistribution of components during annealing, features of surface morphology during formation of inclusions of silicide phases are established.


2007 ◽  
Vol 264 ◽  
pp. 159-162 ◽  
Author(s):  
Yu.N. Makogon ◽  
O.P. Pavlova ◽  
Sergey I. Sidorenko ◽  
G. Beddies ◽  
A.V. Mogilatenko

Influence of an annealing environment and film thickness on the phase formation in the Ti(30 nm)/Si(100), [(Ti+Si) 200 nm]/Si(100) thin film systems produced by magnetron sputtering and the Ti(200 nm)/Si(100) thin film system produced by electron-beam sputtering were investigated by X-ray and electron diffraction, Auger electron spectroscopy (AES), secondary ion mass-spectrometry (SIMS) and resistivity measurements. Solid-state reactions in the thin film systems under investigation were caused by diffusion processes during annealing in the different gas environments: under vacuum of 10-4 - 10-7 Pa, flow of nitrogen and hydrogen. It is shown that the decrease of Ti layer thickness from 200 to 30 nm in the Ti/Si(100) film system causes the increase of the transition temperature of the metastable C49 TiSi2 phase to the stable C54 TiSi2 phase up to 1070 K at vacuum annealing. During annealing in the nitrogen flow of the Ti(30 nm)/Si(100) thin film system the C49 TiSi2 is the first crystal phase which is formed at 870 K. For annealings of the [(Ti+Si) 200 nm]/Si(100) thin film system by impulse heating method or for furnace annealings in inert gas atmosphere of N2, Ar, H or higher vacuum (10-5 Pa) the crystallization process has two stages: the first metastable C49 TiSi2 phase is formed at 870 K and then at higher temperatures it is transformed to the stable C54 TiSi2 phase.


1998 ◽  
Vol 4 (2) ◽  
pp. 158-163 ◽  
Author(s):  
Matthew T. Johnson ◽  
Shelley R. Gilliss ◽  
C. Barry Carter

The use of Pt to mark the initial location of heterophase boundaries in solid-state reactions was extended to investigate the motion of interfaces during a thin-film solid-state reaction between In2O3 and MgO in the presence of an electric field. The Pt markers were prepared by sputtering a thin Pt film onto a single-crystal substrate. The resulting multilayer was then heated prior to thin-film deposition to de-wet the Pt film and thus form an array of small, isolated particles. These particles serve as fine-scale markers for tracking the motion of interfaces. However, there are certain situations in which the markers can move with the interface.


Sign in / Sign up

Export Citation Format

Share Document