scholarly journals Understanding spatial-temporal urban expansion pattern (1990–2009) using impervious surface data and landscape indexes: a case study in Guangzhou (China)

2014 ◽  
Vol 8 (1) ◽  
pp. 083609 ◽  
Author(s):  
Fenglei Fan ◽  
Wei Fan
2019 ◽  
Vol 11 (2) ◽  
pp. 281-284 ◽  
Author(s):  
Shenbagaraj N ◽  
Naresh Kumar M. ◽  
Leo Stalin J.

The Remote Sensing (R/ S) and Geographical Information System (GIS) play a vital role to evaluate and study the urban expansion pattern. In this study, the Chennai city was selected to perform the urban sprawl study. Five different periods of satellite imageries for the time elapsed between 1994 and 2016 were used. The main aim of this paper was to identify the urban sprawl of Chennai as a patterning process. The extended areas of urban in the period of 1994, 2001, 2006, 2011 and 2016 were extracted by the sub-pixel classification method from the satellite imageries. Furthermore, Shannon’s entropy index was used for assessing urban expansion. The findings of this study proved that Chennai city has sprawled by urban expansion during the period between 1994 and 2016. Likewise, the dispersion rate of urban sprawl for the periods of 1994, 2001, 2006, 2011 and 2016 were 0.671, 0.679, 0.688, 0.693 and 0.695 respectively. Consequently, this uncontrolled dispersed urban development had resulted in the study area losses their green space.


10.1596/31939 ◽  
2019 ◽  
Author(s):  
Yuko Okazawa ◽  
Nozomi Murakami
Keyword(s):  

2021 ◽  
Vol 13 (15) ◽  
pp. 8490
Author(s):  
Hongjie Peng ◽  
Lei Hua ◽  
Xuesong Zhang ◽  
Xuying Yuan ◽  
Jianhao Li

In recent years, ecosystem service values (ESV) have attracted much attention. However, studies that use ecological sensitivity methods as a basis for predicting future urban expansion and thus analyzing spatial-temporal change of ESV are scarce in the region. In this study, we used the CA-Markov model to predict the 2030 urban expansion under ecological sensitivity in the Three Gorges reservoir area based on multi-source data, estimations of ESV from 2000 to 2018 and predictions of ESV losses from 2018 to 2030. Research results: (i) In the concept of green development, the ecological sensitive zone has been identified in Three Gorges reservoir area; it accounts for about 35.86% of the study area. (ii) It is predicted that the 2030 urban land will reach 211,412.51 ha by overlaying the ecological sensitive zone. (iii) The total ESV of Three Gorges Reservoir area showed an increasing trend from 2000 to 2018 with growth values of about USD 3644.26 million, but the ESVs of 16 districts were decreasing, with Dadukou and Jiangbei having the highest reductions. (iv) New urban land increases by 80,026.02 ha from 2018 to 2030. The overall ESV losses are about USD 268.75 million. Jiulongpo, Banan and Shapingba had the highest ESV losses.


2021 ◽  
Vol 13 (13) ◽  
pp. 2478
Author(s):  
Tyler Stumpf ◽  
Daniel P. Bigman ◽  
Dominic J. Day

Fort Stanwix National Monument, located in Rome, NY, is a historic park with a complex use history dating back to the early Colonial period and through the urban expansion and recent economic revitalization of the City of Rome. The goal of this study was to conduct a GPR investigation over an area approximately 1 acre in size to identify buried historic features (particularly buildings) so park management can preserve these resources and develop appropriate educational programming and management plans. The GPR recorded reflection events consistent with our expectations of historic structures. Differences in size, shape, orientation, and depth suggest that these responses likely date to different time periods in the site’s history. The GPR recorded other reflection anomalies that are difficult to interpret without any additional information, which suggests that pairing high-density geophysical data with limited excavations is critical to elaborate a complex site’s intricate history.


2021 ◽  
Vol 13 (5) ◽  
pp. 1019
Author(s):  
Jianhui Xu ◽  
Yi Zhao ◽  
Caige Sun ◽  
Hanbin Liang ◽  
Ji Yang ◽  
...  

This study explored the model of urban impervious surface (IS) density, land surface temperature (LST), and comprehensive ecological evaluation index (CEEI) from urban centers to suburbs. The interrelationships between these parameters in Guangzhou from 1987 to 2019 were analyzed using time-series Landsat-5 TM (Thematic Mapper), Landsat-8 OLI (Operational Land Imager), and TIRS (Thermal Infrared Sensor) images. The urban IS densities were calculated in concentric rings using time-series IS fractions, which were used to construct an inverse S-shaped urban IS density function to depict changes in urban form and the spatio-temporal dynamics of urban expansion from the urban center to the suburbs. The results indicated that Guangzhou experienced expansive urban growth, with the patterns of urban spatial structure changing from a single-center to a multi-center structure over the past 32 years. Next, the normalized LST and CEEI in each concentric ring were calculated, and their variation trends from the urban center to the suburbs were modeled using linear and nonlinear functions, respectively. The results showed that the normalized LST had a gradual decreasing trend from the urban center to the suburbs, while the CEEI showed a significant increasing trend. During the 32-year rapid urban development, the normalized LST difference between the urban center and suburbs increased gradually with time, and the CEEI significantly decreased. This indicated that rapid urbanization significantly expanded the impervious surface areas in Guangzhou, leading to an increase in the LST difference between urban centers and suburbs and a deterioration in ecological quality. Finally, the potential interrelationships among urban IS density, normalized LST, and CEEI were also explored using different models. This study revealed that rapid urbanization has produced geographical convergence between several ISs, which may increase the risk of the urban heat island effect and degradation of ecological quality.


2010 ◽  
Vol 20 (6) ◽  
pp. 554-561 ◽  
Author(s):  
Ye Li ◽  
Jianhong Ye ◽  
Xiaohong Chen ◽  
Mohamed A Abdel-Aty P E ◽  
Min Cen

2018 ◽  
Vol 10 (10) ◽  
pp. 3761 ◽  
Author(s):  
Huafei Yu ◽  
Yaolong Zhao ◽  
Yingchun Fu ◽  
Le Li

Urban rainstorm waterlogging has become a typical “city disease” in China. It can result in a huge loss of social economy and personal property, accordingly hindering the sustainable development of a city. Impervious surface expansion, especially the irregular spatial pattern of impervious surfaces, derived from rapid urbanization processes has been proven to be one of the main influential factors behind urban waterlogging. Therefore, optimizing the spatial pattern of impervious surfaces through urban renewal is an effective channel through which to attenuate urban waterlogging risk for developed urban areas. However, the most important step for the optimization of the spatial pattern of impervious surfaces is to understand the mechanism of the impact of urbanization processes, especially the spatiotemporal pattern of impervious surfaces, on urban waterlogging. This research aims to elucidate the mechanism of urbanization’s impact on waterlogging by analysing the spatiotemporal characteristics and variance of urban waterlogging affected by urban impervious surfaces in a case study of Guangzhou in China. First, the study area was divided into runoff plots by means of the hydrologic analysis method, based on which the analysis of spatiotemporal variance was carried out. Then, due to the heterogeneity of urban impervious surface effects on waterlogging, a geographically weighted regression (GWR) model was utilized to assess the spatiotemporal variance of the impact of impervious surface expansion on urban rainstorm waterlogging during the period from the 1990s to the 2010s. The results reveal that urban rainstorm waterlogging significantly expanded in a dense and circular layer surrounding the city centre, similar to the impervious surface expansion affected by urbanization policies. Taking the urban runoff plot as the research unit, GWR has achieved a good modelling effect for urban storm waterlogging. The results show that the impervious surfaces in the runoff plots of the southeastern part of Yuexiu, the southern part of Tianhe and the western part of Haizhu, which have experienced major urban engineering construction, have the strongest correlation with urban rainstorm waterlogging. However, for different runoff plots, the impact of impervious surfaces on urban waterlogging is quite different, as there exist other influence factors in the various runoff plots, although the impervious surface is one of the main factors. This result means that urban renewal strategy to optimize the spatial pattern of impervious surfaces for urban rainstorm waterlogging prevention and control should be different for different runoff plots. The results of the GWR model analysis can provide useful information for urban renewal strategy-making.


Sign in / Sign up

Export Citation Format

Share Document