scholarly journals Applying persistent scatterer interferometry for surface displacement mapping in the Azul open pit manganese mine (Amazon region) with TerraSAR-X StripMap data

2015 ◽  
Vol 9 (1) ◽  
pp. 095978 ◽  
Author(s):  
Carolina de Athayde Pinto ◽  
Waldir Renato Paradella ◽  
José Claudio Mura ◽  
Fabio Furlan Gama ◽  
Athos Ribeiro dos Santos ◽  
...  
2018 ◽  
Vol 10 (10) ◽  
pp. 1507 ◽  
Author(s):  
José Mura ◽  
Fábio Gama ◽  
Waldir Paradella ◽  
Priscila Negrão ◽  
Samuel Carneiro ◽  
...  

The Fundão tailings dam in the Germano iron mining complex (Mariana, Brazil) collapsed on the afternoon of 5 November 2015, and around 32.6 million cubic meters of mining waste spilled from the dam, causing polluion with mining waste along a trajectory of 668 km, extending to the Atlantic Ocean. The Sela & Tulipa and Selinha dikes, and the main Germano tailings dam, were directly or indirectly affected by the accident. This work presents an investigation using Advanced-Differential Interferometric Synthetic Aperture Radar (A-DInSAR) techniques for risk assessment in these critical structures during 18 months after the catastrophic event. The approach was based on the integration of SBAS (Small Baseline Subset) and PSI (Persistent Scatterer Interferometry) techniques, aiming at detecting linear and nonlinear ground displacements in these mining structures. It used a set of 48 TerraSAR-X images acquired on ascending mode from 11 November 2015 to 15 May 2017. The results provided by the A-DInSAR analysis indicated an overall stability in the dikes and in the main wall of Germano tailings dam, which is in agreement with in situ topographic monitoring. In addition, it was possible to detect areas within the reservoir showing accumulated values of up to −125 mm of subsidence, probably caused by settlements of the waste dry material due to the interruption of the mining waste deposition, and values up to −80 mm on auxiliary dikes, probably caused by continuous traffic of heavy equipment. The spatiotemporal information of surface displacement of this large mining structure can be used for future operational planning and risk control.


2020 ◽  
Vol 12 (21) ◽  
pp. 3664
Author(s):  
Fábio F. Gama ◽  
José C. Mura ◽  
Waldir R. Paradella ◽  
Cleber G. de Oliveira

Differential Interferometric SAR (DInSAR) has been used to monitor surface deformations in open pit mines and tailings dams. In this paper, ground deformations have been detected on the area of tailings Dam-I at the Córrego do Feijão Mine (Brumadinho, Brazil) before its catastrophic failure occurred on 25 January 2019. Two techniques optimized for different scattering models, SBAS (Small BAseline Subset) and PSI (Persistent Scatterer Interferometry), were used to perform the analysis based on 26 Sentinel-1B images in Interferometric Wide Swath (IW) mode, which were acquired on descending orbits from 03 March 2018 to 22 January 2019. A WorldDEM Digital Surface Model (DSM) product was used to remove the topographic phase component. The results provided by both techniques showed a synoptic and informative view of the deformation process affecting the study area, with the detection of persistent trends of deformation on the crest, middle, and bottom sectors of the dam face until its collapse, as well as the settlements on the tailings. It is worth noting the detection of an acceleration in the displacement time-series for a short period near the failure. The maximum accumulated displacements detected along the downstream slope face were −39 mm (SBAS) and −48 mm (PSI). It is reasonable to consider that Sentinel-1 would provide decision makers with complementary motion information to the in situ monitoring system for risk assessment and for a better understanding of the ongoing instability phenomena affecting the tailings dam.


2021 ◽  
Vol 25 (1) ◽  
pp. 93-99
Author(s):  
Marcos Eduardo Hartwig ◽  
Leandro Ribes De Lima ◽  
Daniele Perissin

In the last decade, the Persistent Scatterer Interferometry – PSI have been largely employed to predict instabilities and failure in open pit mines. The PSI is a powerful technique, which combines radar satellite data in order to detect and monitor tiny surface displacements over vast areas. In the last years, the Sentinel-1 radar mission have produced images of the globe acquired with different spatial and temporal resolutions that are now freely available. In recent years, the footwall slopes of the Riacho dos Machados Gold Mine – MRDM (Minas Gerais state, southeastern Brazil) have recorded large planar failures controlled by foliation planes. Therefore, the focus of this paper is to evaluate a stack of 39 Interferometric Wide Sentinel-1 scenes, spanning from January 2018 to April 2019, acquired in descending orbit geometry, for the detection and monitoring of surface displacements in the MRDM. The results have shown that descending IW Sentinel-1 scenes can be used to provide a broad picture of the Line-Of-Sight - LOS deformation phenomena. In order to monitor the evolution of the deformation phenomena induced by mining activities, LOS deformation maps with millimeter accuracy could be only delivered at least each 12 days.


Sensors ◽  
2021 ◽  
Vol 21 (3) ◽  
pp. 1004
Author(s):  
Fumitaka Ogushi ◽  
Masashi Matsuoka ◽  
Marco Defilippi ◽  
Paolo Pasquali

To derive surface displacement, interferometric stacking with synthetic aperture radar (SAR) data is commonly used, and this technique is now in the implementation phase in the real world. Persistent scatterer interferometry (PSI) is one of the most universal approaches among in- terferometric stacking techniques, and non-linear non-parametric PSI (NN-PSI) was proposed to overcome the drawbacks of PSI approaches. The estimation of the non-linear displacements was successfully conducted using NN-PSI. However, the estimation of NN-PSI is not always stable with certain displacements because wider range of the velocity spectrum is used in NN-PSI than the conventional approaches; therefore, a calculation procedure and parameter optimization are needed to consider. In this paper, optimized parameters and procedures of NN-PSI are proposed, and real data processing with Sentinel-1 in the Kanto region in Japan was conducted. We confirmed that the displacement estimation was comparable to the measurement of the permanent global positioning system (GPS) stations, and the root mean square error between the GPS measurement and NN-PSI estimation was less than 3 mm in two years. The displacement over 2π ambiguity, which the conventional PSI approach wrongly reconstructed, was also quantitatively validated and successfully estimated by NN-PSI. As a result of the real data processing, periodical displacements were also reconstructed through NN-PSI. We concluded that the NN-PSI approach with the proposed parameters and method enabled the estimation of several types of surface displacements that conventional PSI approaches could not reconstruct.


2019 ◽  
Vol 11 (14) ◽  
pp. 1675 ◽  
Author(s):  
Tomás ◽  
Pagán ◽  
Navarro ◽  
Cano ◽  
Pastor ◽  
...  

This work describes a new procedure aimed to semi-automatically identify clusters of active persistent scatterers and preliminarily associate them with different potential types of deformational processes over wide areas. This procedure consists of three main modules: (i) ADAfinder, aimed at the detection of Active Deformation Areas (ADA) using Persistent Scatterer Interferometry (PSI) data; (ii) LOS2HV, focused on the decomposition of Line Of Sight (LOS) displacements from ascending and descending PSI datasets into vertical and east-west components; iii) ADAclassifier, that semi-automatically categorizes each ADA into potential deformational processes using the outputs derived from (i) and (ii), as well as ancillary external information. The proposed procedure enables infrastructures management authorities to identify, classify, monitor and categorize the most critical deformations measured by PSI techniques in order to provide the capacity for implementing prevention and mitigation actions over wide areas against geological threats. Zeri, Campiglia Marittima–Suvereto and Abbadia San Salvatore (Tuscany, central Italy) are used as case studies for illustrating the developed methodology. Three PSI datasets derived from the Sentinel-1 constellation have been used, jointly with the geological map of Italy (scale 1:50,000), the updated Italian landslide and land subsidence maps (scale 1:25,000), a 25 m grid Digital Elevation Model, and a cadastral vector map (scale 1:5,000). The application to these cases of the proposed workflow demonstrates its capability to quickly process wide areas in very short times and a high compatibility with Geographical Information System (GIS) environments for data visualization and representation. The derived products are of key interest for infrastructures and land management as well as decision-making at a regional scale.


Sign in / Sign up

Export Citation Format

Share Document