Hot press molding process for pyramid-type glass optical multiplexer

2014 ◽  
Vol 53 (12) ◽  
pp. 127103
Author(s):  
Myeong-Jin Ko ◽  
Soon-Sub Park
2012 ◽  
Vol 602-604 ◽  
pp. 2017-2020
Author(s):  
Jin Li ◽  
Liang Yi Li ◽  
Chun Ling Zhou

This paper includes the result about the traditional preparation process on the basis of improved powder metallurgy method by using the hot press molding process. The aim of the process is to enhance the preparation of 5,7,10 body size of SiCp / Al functional graded composites. Moreover, the performance of impact toughness has been addressed and analyzed through solid study. The result can be concluded as following: The preparation via vacuum hot pressing process of SiCp / Al FGM has been performed good enough to reduce the cost of secondary processing; 5 SiCp/Al FGM shows better impact toughness properties in the test.


2015 ◽  
Vol 137 (1) ◽  
Author(s):  
Xinrui Zhang ◽  
Xianqiang Pei ◽  
Qihua Wang ◽  
Tingmei Wang

Carbon fabric/phenolic composites modified with potassium titanate whisker (PTW) were prepared by a dip-coating and hot-press molding technique, and the tribological properties of the resulting composites were investigated systematically using a ring-on-block arrangement under different sliding conditions. Experimental results showed that the optimal PTW significantly decreased the wear-rate. The worn surfaces of the composites and the transfer film formed on the counterpart steel ring were examined by scanning electron microscopy (SEM) to reveal the wear mechanisms. The transfer films formed on the counterpart surfaces made contributions to the improvement of the tribological behavior of the carbon fabric composites. The friction and wear of the filled carbon fabric composites was significantly dependent on the sliding conditions. It is observed that the wear-rate increased with increasing applied load and sliding speeds.


2018 ◽  
Vol 32 (9) ◽  
pp. 1190-1203 ◽  
Author(s):  
Xuping Yang ◽  
Wenbin Yang ◽  
Jinghui Fan ◽  
Juying Wu ◽  
Kai Zhang

Thermally conductive and electrically insulating polyamide 6 (PA6) matrix quaternary composites were prepared by hot press molding and injection molding, respectively. The quaternary composites were composed of zero-dimensional aluminum oxide particle, one-dimensional silicon carbide whisker, two-dimensional flake graphite, and PA6 resin matrix. Morphology, structure, density, thermal conductivity, volume electrical resistivity, and tensile strength of two types of composites were characterized by scanning electron microscopy, X-ray diffractometer, thermal conductivity tester, high resistance micro-current tester, and tensile tester. The results showed that crystallinity, thermal conductivity, density, and tensile strength of hot press molding samples were superior to those of samples made by injection molding method. This is due to that hot press molding method can provide higher molding pressure and longer annealing time than injection molding. The mechanism could be explained that the performances of the composites were promoted by increasing molding pressure and annealing time.


2019 ◽  
Vol 39 (10) ◽  
pp. 874-882 ◽  
Author(s):  
Tian Yang ◽  
Yongliang Jin ◽  
Haitao Duan ◽  
Jiesong Tu ◽  
Dan Jia ◽  
...  

Abstract To prepare a high-performance anti-friction and wear-resistant composite material for friction sub-components in marine equipment, a modification was made by adding different amounts sodium polyacrylate (PAANa) to ultra-high molecular weight polyethylene (UHMWPE). PAANa/UHMWPE-blended powders were prepared at individual weight ratios of 0/100, 3/97, 5/95, 8/92, 13/87, and 18/82 with hot-press molding. In seawater, experiments of PAANa/UHMWPE composites sliding against GCr15 have been conducted with a ball-on-disk configuration in this study. The results show the surface hardness of composites was almost the same with the increase in PAANa proportion, however, the friction coefficient and wear scars of PAANa/UHMWPE composites/GCr15 sliding pairs firstly decrease and then increase. Scanning electron microscopy (SEM) results show that wear mechanism of the composites is mainly plastic deformation and spalling. The composites with PAANa content of 3% and 5% achieves better tribological properties than the pure UHMWPE material.


2019 ◽  
Vol 3 (1) ◽  
pp. 14 ◽  
Author(s):  
Kazuto Tanaka ◽  
Ririko Habe ◽  
Masayoshi Tanaka ◽  
Tsutao Katayama

In the automobile industry, carbon fiber reinforced thermoplastics (CFRTP) have attracted attention as potential materials to reduce the weight of the automobile body. In order to apply CFRTP to mass-produced automobile parts, it is necessary to develop the reduction of molding time and the impregnation method into the carbon fiber (CF) for the thermoplastic resin, which has relatively high viscosity. Although the conventional hot press molding uses only the heat transfer from the mold to the molding materials, it is expected to develop a new molding method for CFRTP using heat generation of the materials themselves to overcome these issues. As a method of heating the carbon fiber, there is a direct resistance heating method, in which carbon fiber is directly energized and heated by Joule heat. We have developed resistance welding methods in which carbon nanotube (CNT) grafted carbon fiber (CNT-CF) is used for the heating elements, and revealed that the higher welded strength is obtained by using CNT-CF instead of CF. Therefore, the carbon nanofilaments (CNF) grafted carbon fiber (CNF-CF) including CNF-CF is expected not only to be used as a resistance heating medium at the time of joining but also as a reinforcing fiber and as a self-heating member at the time of molding. In this study, we develop the CFRTP molding method by using direct resistance heating to CNF-CF in the hot press molding. CFRTP ([0°]20) with the volume fractions (Vf) of 40% are molded by conventional hot press and hot press with direct resistance heating to reinforcing fiber. CF or CNF-CF is used for reinforcement. CFRTP molded by hot press with direct resistance heating to CNF-CF indicated lower void content than CFRTP molded by hot press with direct resistance heating to CF. Compared to CFRTP molding by only hot press, hot press molding with direct resistance heating to CNF-CF can mold CFRTP with low void content.


Author(s):  
Roni Sujarwadi ◽  
Tresna Priyana Soemardi

In this research, composite material was fabricated from both renewable resources and biodegradable materials: ramie woven fabric as reinforcement and 3D printed polylactic acid (PLA) filament as resin matrix. The laminate composites were produced using a film stacking method and processed using hot-press molding. The mechanical properties of woven ramie fabric, PLA matrix, and laminate composites were investigated. It is shown that the breaking force of the plain woven ramie fabric in the warp direction was greater than in the weft direction. Further, the tensile and impact properties of laminate at warp direction higher than weft direction when ramie fabric reinforcement is used. In addition, scanning electron microscopy examination of laminate composite showed good bonding between ramie fiber and PLA matrix. In summary, laminated composites based on polylactic acid and woven ramie fabric display good performance capability, which can use for the development of engineering applications.


Sign in / Sign up

Export Citation Format

Share Document