scholarly journals Mechanical Characteristics Testing of Biodegradable Ramie Fiber Reinforced Polylactic Acid (PLA) Fabricated with Hot-Press Molding

Author(s):  
Roni Sujarwadi ◽  
Tresna Priyana Soemardi

In this research, composite material was fabricated from both renewable resources and biodegradable materials: ramie woven fabric as reinforcement and 3D printed polylactic acid (PLA) filament as resin matrix. The laminate composites were produced using a film stacking method and processed using hot-press molding. The mechanical properties of woven ramie fabric, PLA matrix, and laminate composites were investigated. It is shown that the breaking force of the plain woven ramie fabric in the warp direction was greater than in the weft direction. Further, the tensile and impact properties of laminate at warp direction higher than weft direction when ramie fabric reinforcement is used. In addition, scanning electron microscopy examination of laminate composite showed good bonding between ramie fiber and PLA matrix. In summary, laminated composites based on polylactic acid and woven ramie fabric display good performance capability, which can use for the development of engineering applications.

2015 ◽  
Vol 137 (1) ◽  
Author(s):  
Xinrui Zhang ◽  
Xianqiang Pei ◽  
Qihua Wang ◽  
Tingmei Wang

Carbon fabric/phenolic composites modified with potassium titanate whisker (PTW) were prepared by a dip-coating and hot-press molding technique, and the tribological properties of the resulting composites were investigated systematically using a ring-on-block arrangement under different sliding conditions. Experimental results showed that the optimal PTW significantly decreased the wear-rate. The worn surfaces of the composites and the transfer film formed on the counterpart steel ring were examined by scanning electron microscopy (SEM) to reveal the wear mechanisms. The transfer films formed on the counterpart surfaces made contributions to the improvement of the tribological behavior of the carbon fabric composites. The friction and wear of the filled carbon fabric composites was significantly dependent on the sliding conditions. It is observed that the wear-rate increased with increasing applied load and sliding speeds.


2021 ◽  
Vol 13 (10) ◽  
pp. 11597-11608
Author(s):  
Sol R. Martínez ◽  
Yohana B. Palacios ◽  
Daniel A. Heredia ◽  
Virginia Aiassa ◽  
Antonela Bartolilla ◽  
...  
Keyword(s):  

Lab on a Chip ◽  
2021 ◽  
Author(s):  
Liang Wu ◽  
Stephen Beirne ◽  
Joan-Marc Cabot Canyelles ◽  
Brett Paull ◽  
Gordon G. Wallace ◽  
...  

Additive manufacturing (3D printing) offers a flexible approach for the production of bespoke microfluidic structures such as the electroosmotic pump. Here a readily accessible fused filament fabrication (FFF) 3D printing...


2020 ◽  
Author(s):  
Dyah Hikmawati ◽  
Siti Zulaihah ◽  
Aminatun
Keyword(s):  

2021 ◽  
Vol 22 (9) ◽  
pp. 18-100
Author(s):  
Hector-Noel Morales-Lovera ◽  
Jose-Luis Olvera-Cervantes ◽  
Alonso Corona-Chavez ◽  
Tejinder Kaur Kataria

2021 ◽  
Vol 63 (1) ◽  
pp. 73-78
Author(s):  
Pulkin Gupta ◽  
Sudha Kumari ◽  
Abhishek Gupta ◽  
Ankit Kumar Sinha ◽  
Prashant Jindal

Abstract Fused deposition modelling (FDM) is a layer-by-layer manufacturing process type of 3D-printing (3DP). Significant variation in the mechanical properties of 3D printed specimens is observed because of varied process parameters and interfacial bonding between consecutive layers. This study investigates the influence of heat treatment on the mechanical strength of FDM 3D printed Polylactic acid (PLA) parts with constant 3DP parameters and ambient conditions. To meet the objectives, 7 sets, each containing 5 dog-bone shaped samples, were fabricated from commercially available PLA filament. Each set was subjected to heat treatment at a particular temperature for 1 h and cooled in the furnace itself, while one set was left un-treated. The temperature for heat treatment (Th) varied from 30 °C to 130 °C with increments of 10 °C. The heat-treated samples were characterized under tensile loading of 400 N and mechanical properties like Young’s modulus (E), Strain % ( ε ) and Stiffness (k) were evaluated. On comparing the mechanical properties of heat-treated samples to un-treated samples, significant improvements were observed. Heat treatment also altered the geometries of the samples. Mechanical properties improved by 4.88 % to 10.26 % with the maximum being at Th of 110 °C and below recrystallization temperature (Tr) of 65 °C. Deformations also decreased significantly at higher temperatures above 100 °C, by a maximum of 36.06 %. The dimensions of samples showed a maximum decrease of 1.08 % in Tr range and a maximum decrease of 0.31 % in weight at the same temperature. This study aims to benefit the society by establishing suitable Th to recover the lost strength in PLA based FDM 3D printed parts.


2018 ◽  
Vol 777 ◽  
pp. 499-507 ◽  
Author(s):  
Ossi Martikka ◽  
Timo Kärki ◽  
Qing Ling Wu

3D printing has rapidly become popular in both industry and private use. Especially fused deposition modeling has increased its popularity due to its relatively low cost. The purpose of this study is to increase knowledge in the mechanical properties of parts made of wood-plastic composite materials by using 3D printing. The tensile properties and impact strength of two 3D-printed commercial wood-plastic composite materials are studied and compared to those made of pure polylactic acid. Relative to weight –mechanical properties and the effect of the amount of fill on the properties are also determined. The results indicate that parts made of wood-plastic composites have notably lower tensile strength and impact strength that those made of pure polylactic acid. The mechanical properties can be considered sufficient for low-stress applications, such as visualization of prototypes and models or decorative items.


Author(s):  
Conrad West ◽  
Robert McTaggart ◽  
Todd Letcher ◽  
Douglas Raynie ◽  
Ranen Roy

3D printing offers the opportunity to design and make replacement parts to exacting specifications when needed. This is particularly helpful for space applications where stand-alone replacement mechanisms are required. Samples of 3D-printed polylactic acid (PLA) were subjected with up to 200 kGy of gamma radiation from a Cobalt-60 irradiator. The mechanical responses to destructive testing were successfully modeled with a combination of linear and exponential functions and may be understood given the underlying chemical changes due to said radiation exposures. We find that for doses up to 50 kGy, the performance of 3D-printed PLA is largely unaffected, which is beneficial for applications in space and in medicine. At larger doses, it appears that decomposition processes win out over cross-linking, which may aid in the degradation of PLA in waste streams.


Sign in / Sign up

Export Citation Format

Share Document